Clinical Trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here: nccn.org/clinical_trials/physician.html.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise specified.

See NCCN Categories of Evidence and Consensus.
Updates in Version 2.2016 of the NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections from Version 2.2015 include:

INF-1
- Overall Infection Risk In Patients With Cancer (Intermediate and High)
 - Under Antimicrobial Prophylaxis, statement added: "Consider PCP prophylaxis"
 - Footnote "g" revised: "See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions. The antivirals are not equal in terms of efficacy, side effects, and resistance." (Also for INF-3, INF-4, and INF-5)

INF-2
- Antifungal Prophylaxis
 - For ALL, "Micafungin" was added.
 - For MDS (neutropenic), AML (neutropenic), and Significant GVHD, "Micafungin (category 2B)" was added.
 - For Allogeneic HCT (neutropenic), Itraconazole (category 2B) was removed.
 - Footnote "k" revised: "Consider antifungal prophylaxis in all patients with GVHD receiving immunosuppressive therapy (IST)"
 - Footnote "m" revised: "Itraconazole, voriconazole, and posaconazole are more potent inhibitors of hepatic cytochrome P450 3A4 isoenzymes than fluconazole and may significantly decrease the clearance of several agents used to treat cancer (eg, vincristine)."

INF-3
- Overall Infection Risk In Patients With Cancer (Intermediate)
 - Minimum Duration revised:
 - "Consider during active therapy and possibly longer depending on degree of immunosuppression at least 30 d after HSCT"
 - "Consider for at least 4–6 months after autologous HSCT HCT and at least 6–12 months after allogeneic HCT"
INF-5
• Prevention Of Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), and Human Immunodeficiency Virus (HIV) Reactivation Or Disease
 ▶ High-Risk Examples for HBV, HCV, and HIV were removed.
 ▶ Therapy Considerations
 ◊ HCV was revised: "ID consult to evaluate Consider concomitant or sequential anti-HCV and cancer therapy"
 ◊ HIV was revised: "ID consult to adjust dosing and regimens for concurrent treatment in context of cancer therapy"
 ◊ Footnote "x" was added: "Drug interactions may complicate therapies. Consultation is recommended."
INF-6
• Antiviral Therapy
 ◊ HBV: Adefovir and Telbivudine were removed.
 ◊ Footnote was removed: "Integrate-strand transfer inhibitor treatments or non-nucleoside reverse transcriptase inhibitors may have fewer drug-drug interactions with cancer treatments compared to protease inhibitors."
INF-6 continued
 ▶ Footnote "If" was revised: "The list of agents is alphabetical and does not reflect preference. Consider TMP/SMX trimethoprim/sulfamethoxazole desensitization or atovaquone, dapsone, or pentamidine (aerosolized or IV); or when PCP prophylaxis is required; and patients who are trimethoprim/sulfamethoxazole TMP/SMX intolerant. For patients receiving dapsone, consider assessing G6PD levels."
INF-7
• "General Recommendations For Vaccination In Patients With Cancer" page was extensively revised.
INF-8
• "Recommended Vaccination Schedule After Autologous Or Allogeneic HCT" title was revised.
 ▶ Inactivated Vaccines
 ◊ "Inactivated Polio vaccine" was added.
 ◊ Number of Doses of Meningococcal conjugate vaccine was revised: "1–2"
 ◊ Footnote "jj" was added: "Meningococcal B vaccine should be considered for high-risk patients such as patients with asplenia or complement deficiency or patients receiving eculizumab."
 ▶ Live Vaccines
 ◊ Zoster vaccine corrected to "varicella vaccine"
 ◊ "Zoster vaccine (category 3)" was added
 ▶ Recommended Timing After HCT
 ◊ Zoster Vaccine (category 3) added: "May be considered at ≥24 mo (if no GVHD or ongoing immunosuppression)"
 ◊ Footnote "ll" was added: "Because of insufficient data on safety and efficacy of zoster vaccine among HCT recipients, physicians should assess the immune status of each recipient on a case-by-case basis and determine the risk for infection before using the vaccine."

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
FEV-5
- Initial Empiric Therapy For Fever And Neutropenia
 ‣ Footnote was removed: "May interfere with galactomannan measurement."

FEV-7
- Additions to Initial Empiric Regimen
 ‣ Abdominal pain and Diarrhea
 ◊ Statement revised: "Oral vancomycin (preferred)"
 ◊ Footnote "t" for C. difficile was added: "The safety of probiotics or Fecal Microbiota Transplantation (FMT) in this setting has not been shown."

FEV-8
- Evaluation
 ‣ 5th sub-bullet revised: "Consider BAL, including galactomannan, particularly if no response to initial therapy or if diffuse infiltrates present"
 ‣ Additions to Initial Empiric Regimen
 ‣ 2nd sub-bullet revised: "Antiviral therapy during peak influenza outbreaks season in local area"
 ‣ Bullet added: "Re-evaluate for ability to de-escalate"
 ‣ Bullet removed: "Adjunctive therapies may be considered in certain patient populations"
 ‣ Footnote removed: "See Adjunctive Therapies (FEV-E)."

FEV-9
- Footnote removed: "See Adjunctive Therapies (FEV-E)."
- Footnote removed: "See Appropriate Use of Vancomycin and Other Agents for Gram-Positive Resistant Infections (FEV-F)"

FEV-11
- Suggested Minimum Duration of Therapy For Documented Infection
 ‣ 3rd sub-bullet revised: "S. aureus: typically requires 4 at least 2 weeks after first negative blood culture; treatment may need to be prolonged in cases of endovascular involvement; encourage ID consult"
 ‣ 5th sub-bullet revised: "Consider Catheter removal favored for bloodstream infections with Candida, S. aureus, Pseudomonas aeruginosa, Corynebacterium jeikeium, Acinetobacter, Bacillus organisms, atypical mycobacteria, yeasts, molds, vancomycin-resistant enterococci, and Stenotrophomonas maltophilia"

FEV-A (1 of 4)
- Comments/Precautions
 ‣ Vancomycin, bullet added: "Loading dose may be considered"
 ‣ Daptomycin, bullet removed: "Myositis is a potential toxicity"

FEV-A (2 of 4)
- Dose
 ‣ Footnote "b" for dosing revised: "Requires dose adjustment in patients with renal insufficiency. Dosing variations exist."
 ‣ Comments/Precautions
 ‣ Cefepime, bullet added: "Neurotoxicity may occur"
FEV-A (3 of 4)
• Antibacterial Agents: Other
 ‣ Amoxicillin/clavulanate moved from "Dose" to "Other Antibacterial Agents"
 ‣ Ciprofloxacin
 ◊ Spectrum, 3rd bullet revised: "Ciprofloxacin alone has no activity against anaerobes"
 ‣ Levofloxacin and Moxifloxacin
 ◊ Spectrum, 4th bullet revised: "Moxifloxacin has limited activity against Pseudomonas"
 "Metronidazole" added
 ◊ Dose: "500 mg infused every 6 h or 500 mg PO every 6–8 h"
 ◊ Spectrum: "Good activity against anaerobic organisms"

FEV-B (1 of 4) continued
• Voriconazole
 ◊ 3rd bullet revised: "Fluoride levels should be checked to prevent toxicity and in response to bone/muscle pain. Fluorosis may occur with prolonged use and is associated with bone/muscle pain"

FEV-B (2 of 4)
• Liposomal amphotericin B (L-AMB), dosing was revised: "≥3–5 mg/kg/d IV"
 • Footnote "g" was added: "Slowing the rate of infusion is an additional way to manage amphotericin infusion reactions."

FEV-B (3 of 4)
• Antifungal Agents
 ‣ Anidulafungin
 ◊ Comments/Cautions
 – 1st bullet revised: "Primary Empiric therapy for candidemia and invasive candidiasis (category 1), pending susceptibility data"
 – 2nd bullet revised: "Superior Efficacy established compared to fluconazole as primary therapy for candidemia and invasive candidiasis"
 ‣ Caspofungin
 ◊ Dose, 2nd bullet revised: "Some investigators use 70 mg IV daily as therapy for aspergillosis in salvage cases"
 ‣ Micafungin
 ◊ Dose, 2nd bullet revised: "150 mg/d IV used at some centers for Aspergillus sp. infection in salvage cases"
 • Footnote "h" was revised: "A number of centers use combination voriconazole and an echinocandin for invasive aspergillosis based on in vitro, animal, and limited clinical data. Evidence for combination therapy remains limited."

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
FEV-B (4 of 4)

FEV-C (1 of 4)
• Antiviral Agents
 ◦ 2nd heading modified: "COMMON INDICATION" Also for FEV-C (page 3 of 4)
 ◦ Ganciclovir
 ◦ Bullet removed: "Prophylaxis for CMV: 5–6 mg/kg IV every day for 5 days/week from engraftment until day 100 after HSCT"
 ◦ Valganciclovir
 ◦ 2nd bullet revised: "Preemptive therapy for CMV: Induction with 900 mg PO BID for at least 2 weeks and until negative test; consider additional 900 mg PO daily for at least 7 days after a negative test for maintenance"
 ◦ Footnote "d" revised: "In general, the strategy of CMV surveillance testing by antigenemia or PCR followed by preemptive anti-CMV therapy for a positive result is favored over universal long-term prophylaxis in allogeneic HCT patients."

FEV-C (2 of 4)
• Antiviral Agents
 ◦ Oseltamivir
 ◦ 2nd sentence revised: "Treatment: 75 mg BID (higher dose 150 mg BID can be considered)"
 ◦ Footnote "e" for Cidofovir added: "A dose of 1 mg/kg administered three times a week is common for less severe adenovirus infections."
 ◦ Footnote "f" for Oseltamivir and Zanamivir added: "Consider peramivir for patients who cannot have oral oseltamivir or inhaled zanamivir."

FEV-C (3 of 4)
• Antiviral Agents
 ◦ Ribavirin
 ◦ "category 3" was added
 ◦ Treatment revised: "Consider for treatment of RSV disease: 6 gm administered by continuous inhalation via SPAG-2 nebulizer every 12–18 h daily for 7 days or 2 g over 2 h TID; or 600–800 mg PO BID; may be paired with IVIG (400–500 mg/kg every other day)"
 ◦ Adefovir removed from the table.
 ◦ Telbivudine removed from the table.

FEV-E
• Adjunctive Therapies page was removed.

FEV-F
• Appropriate Use Of Vancomycin and Other Agents for Gram-Positive Resistant Infections page was removed.
Prevention and Treatment of Cancer-Related Infections

OVERALL INFECTION RISK IN PATIENTS WITH CANCER

<table>
<thead>
<tr>
<th>Category</th>
<th>Disease/THERAPY EXAMPLES</th>
<th>FEVER & NEUTROPENIA RISK (See FEV-2)</th>
<th>ANTIMICROBIAL PROPHYLAXIS d,e,f,g,h,i</th>
</tr>
</thead>
</table>
| Low | • Standard chemotherapy regimens for most solid tumors
 • Anticipated neutropenia less than 7 d | Incidence low | • Bacterial - None
 • Fungal - None
 • Viral - None unless prior HSV episode |
| Intermediate | • Autologous HCT
 • Lymphoma c
 • Multiple myeloma c
 • CLL c
 • Purine analog therapy (ie, fludarabine, clofarabine, nelarabine, cladribine)
 • Anticipated neutropenia 7–10 d | Incidence usually high, significant variability may exist | • Bacterial - Consider fluoroquinolone prophylaxis
 • Fungal - Consider prophylaxis during neutropenia and for anticipated mucositis (See INF-2); consider PCP prophylaxis (See INF-6)
 • Viral - During neutropenia and longer depending on risk (See INF-3, INF-4, INF-5) |
| High b | • Allogeneic HCT including cord blood
 • Acute leukemia
 • Induction
 • Consolidation
 • Alemtuzumab therapy
 • GVHD treated with high-dose steroids (>20 mg daily)
 • Anticipated neutropenia greater than 10 d | Incidence usually high, significant variability may exist | • Bacterial - Consider fluoroquinolone prophylaxis
 • Fungal - Consider prophylaxis during neutropenia (See INF-2); consider PCP prophylaxis (See INF-6)
 • Viral - During neutropenia and longer depending on risk (See INF-3, INF-4, INF-5) |

KEY: CLL = chronic lymphocytic leukemia, GVHD = graft-versus-host disease, HCT = hematopoietic cell transplant, HSV = herpes simplex virus, PCP = pneumocystis pneumonia

aCategories of risk are based on several factors, including underlying malignancy, whether disease is in remission, duration of neutropenia, prior exposure to chemotherapy, and intensity of immunosuppressive therapy.
bIn high-risk patients, additional prophylaxis may be necessary; for example, consider penicillin and TMP/SMX for allogeneic HCT recipients with GVHD.
cThis is a heterogenous disease. Therefore, treatment modalities and the type of malignancy affect risk level.
dPneumocystis prophylaxis (See INF-6).
eSee Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.
fSee Antifungal Agents (FEV-B) for dosing, spectrum, and specific comments/cautions.
gSee Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions.
hAlthough data support levofloxacin prophylaxis for low- and intermediate-risk patients, the panel discourages this practice in low-risk patients because of concerns about antimicrobial resistance; however, it can be considered in intermediate-risk patients.
iFor patients who are intolerant to fluoroquinolone, consider TMP/SMX.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
OVERALL INFECTION RISK IN PATIENTS WITH CANCER

<table>
<thead>
<tr>
<th>DISEASE/ThERAPY EXAMPLES</th>
<th>ANTIFUNGAL PROPHYLAXIS</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Consider:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fluconazole<sup>m</sup> or Micafungin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Amphotericin B products<sup>n</sup> (category 2B)</td>
<td></td>
</tr>
<tr>
<td>MDS (neutropenic)</td>
<td>Consider:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Posaconazole<sup>m</sup> (category 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Voriconazole<sup>m</sup>, Fluconazole<sup>m</sup>, Micafungin, or Amphotericin B products<sup>n</sup> (all category 2B)</td>
<td></td>
</tr>
<tr>
<td>AML (neutropenic)</td>
<td>Consider:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fluconazole<sup>m</sup> or Micafungin (both category 1)</td>
<td></td>
</tr>
<tr>
<td>Autologous HCT with mucositis<sup>j</sup></td>
<td>Consider no prophylaxis (category 2B)</td>
<td></td>
</tr>
<tr>
<td>Autologous HCT without mucositis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allogeneic HCT (neutropenic)</td>
<td>Consider:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fluconazole<sup>m</sup> or Micafungin (both category 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Voriconazole<sup>m</sup>, Posaconazole<sup>m</sup>, or Amphotericin B products<sup>n</sup> (all category 2B)</td>
<td></td>
</tr>
<tr>
<td>Significant GVHD<sup>k</sup></td>
<td>Consider:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Posaconazole<sup>m</sup> (category 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Voriconazole<sup>m</sup>, Echinocandin, Amphotericin B products<sup>n</sup> (all category 2B)</td>
<td></td>
</tr>
</tbody>
</table>

INTERMEDIATE TO HIGH

Categories of risk are based on several factors, including underlying malignancy, whether disease is in remission, duration of neutropenia, prior exposure to chemotherapy, and intensity of immunosuppressive therapy.

See Antifungal Agents (FEV-B) for dosing, spectrum, and specific comments/cautions.

Mucositis is a risk factor for candidemia in patients with hematologic malignancies and hematopoietic cell transplant recipients not receiving antifungal prophylaxis.

See Antipneumocystis Prophylaxis (INF-6) for further details.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
PREVENTION OF HERPES SIMPLEX VIRUS (HSV) AND VARICELLA ZOSTER VIRUS (VZV) REACTIVATION OR DISEASE

<table>
<thead>
<tr>
<th>OVERALL INFECTION RISK IN PATIENTS WITH CANCERA</th>
<th>DISEASE/ThERAPY EXAMPLES</th>
<th>VIRAL INFECTION or REACTIVATION</th>
<th>ANTIVIRAL PROPHYLAXIS</th>
<th>MINIMUM DURATIONg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>• Standard chemotherapy regimens for solid tumors</td>
<td>HSV</td>
<td>None unless prior HSV episode</td>
<td>During active therapy including periods of neutropenia</td>
</tr>
<tr>
<td>Intermediate</td>
<td>• Autologous HCT</td>
<td>HSV VZV</td>
<td>Acyclovir Famciclovir Valacyclovir</td>
<td>HSV prophylaxis • Consider during active therapy and possibly longer depending on degree of immunosuppression VZV prophylaxis • Consider for at least 6–12 months after autologous HCT</td>
</tr>
<tr>
<td></td>
<td>• LymphomaC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multiple MyelomaC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CLLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Purine analog therapy (eg, fludarabine)</td>
<td>HSV VZV</td>
<td>Acyclovir Famciclovir Valacyclovir</td>
<td>HSV prophylaxis during active therapy including periods of neutropenia</td>
</tr>
<tr>
<td>High</td>
<td>• Acute leukemia</td>
<td>HSV VZV</td>
<td>Acyclovir Famciclovir Valacyclovir</td>
<td>VZV prophylaxis during active therapy including periods of neutropenia</td>
</tr>
<tr>
<td></td>
<td>› Induction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>› Consolidation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Proteasome inhibitors</td>
<td>VZV</td>
<td>Acyclovir Famciclovir Valacyclovir</td>
<td></td>
</tr>
<tr>
<td>• Alemtuzumab therapy</td>
<td>HSV VZV</td>
<td>Acyclovir Famciclovir Valacyclovir</td>
<td>HSV prophylaxis • Minimum of 2 mo after alemtuzumab and until CD4 ≥200 cells/mcL VZV prophylaxis • Prophylaxis should be considered for at least 1 y after allogeneic HCT</td>
<td></td>
</tr>
<tr>
<td>• Allogeneic HCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GVHD requiring steroid treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY: CLL = chronic lymphocytic leukemia, CMV = cytomegalovirus, GVHD = graft-versus-host disease, HBV = hepatitis B virus, HCT = hematopoietic cell transplant

*aCategories of risk are based on several factors, including underlying malignancy, whether disease is in remission, duration of neutropenia, prior exposure to chemotherapy, and intensity of immunosuppressive therapy.

CThis is a heterogenous disease. Therefore, treatment modalities and the type of malignancy affect risk level.

gSee Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions.

For CMV antiviral prophylaxis, see INF-4. For HBV, HCV, and HIV antiviral prophylaxis, see INF-5.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Prevention of Cytomegalovirus (CMV) Reactivation or Disease

Overall Infection Risk in Patients with Cancer

<table>
<thead>
<tr>
<th>Disease/Therapy Examples</th>
<th>Surveillance Period</th>
<th>Preemptive Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allogeneic hematopoietic cell transplant recipients</td>
<td>Typically for 1 to 6 months after transplant</td>
<td>Foscarnet (IV) or Cidofovir (IV)</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>For a minimum of 2 months after alemtuzumab</td>
<td>First-line therapy</td>
</tr>
</tbody>
</table>

- **High risk for CMV**
 - Allogeneic hematopoietic cell transplant recipients
 - Alemtuzumab

Notes:

- Categories of risk are based on several factors, including underlying malignancy, whether disease is in remission, duration of neutropenia, prior exposure to chemotherapy, and intensity of immunosuppressive therapy.
- See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions.
- CMV surveillance consists of at least weekly monitoring by PCR.
- Preemptive therapy is defined as administration of antiviral agents to asymptomatic patients at high risk for clinical infection based on laboratory markers of viremia. Duration of antiviral therapy generally is for at least 2 weeks and until CMV is no longer detected.
- Clinicians should measure for end-organ disease and tailor duration of preemptive therapy accordingly.
- Typically therapy is initiated with oral valganciclovir unless there are absorption or toxicity issues and would be continued at a minimum until a negative PCR. However, some centers prefer ganciclovir over valganciclovir.
- Foscarnet or cidofovir should be used for cases of ganciclovir-resistant CMV or when ganciclovir is not tolerated (e.g., ganciclovir-induced myelosuppression).

Discussion

Prevention and Treatment of Cancer-Related Infections

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

PREVENTION OF HEPATITIS B VIRUS (HBV), HEPATITIS C VIRUS (HCV), AND HUMAN IMMUNODEFICIENCY VIRUS (HIV)
REACTIVATION OR DISEASE

<table>
<thead>
<tr>
<th>THERAPY CONSIDERATIONS</th>
<th>ANTVIRAL THERAPY</th>
<th>SURVEILLANCE</th>
</tr>
</thead>
</table>
| ID consult to determine possible antiviral prophylaxis • Consider delayed transplant if active infection | Antivirals
 • Entecavir
 • Tenofovir
 • Lamivudine | At least 6–12 months following conclusion of treatment |
| Consider concomitant or sequential anti-HCV and cancer therapy | Refer to HCV guidelines | Monitor ALT and HCV RNA monthly or as clinically indicated |
| ID consult to adjust dosing and regimens in context of cancer therapy | Antiretroviral therapy | Monthly during therapy then as clinically indicated |

8See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions.
9Any patient who is expected to receive IST or chemotherapy should be screened for HBV, HCV, and HIV prior to treatment. Other patients at high risk of developing infection should also be screened. See Discussion for other high-risk groups.
10High risk of HBV is defined as patients with HBsAg+ serology or with prior resolved HBV infection (HBsAg-, HBsAb+, HBcAb+ serology) or with increasing HBV viral load planned for allogeneic HCT or anti-CD20, anti-CD52 monoclonal antibody therapy.
11Diagnostic monitoring and treatment for HBV, HCV, and HIV are an evolving field; consultation with an infectious disease expert or hepatologist should be sought in the management of all patients with reactivation or disease.
12Drug interactions may complicate therapies. Consultation is recommended.
13Chronic hepatitis based on biopsy or active viral replication (ie, high levels of HBsAg+ and/or HBeAg+ or increasing HBV viral load). Biopsy should be performed if clinical suspicion of disease. In case of cirrhosis, reconsider decision for transplant.
14Therapy should be given by provider experienced in Hepatitis C. See American Association for the Study of Liver Diseases/Infectious Diseases Society of America HCV Guidelines.
15If viral load is consistently undetectable, treatment is considered prophylactic. If viral load fails to drop or previously indetectable PCR becomes positive, consult hepatologist and discontinue anti-CD20 antibody therapy.
16Duration of therapy may depend on various factors. The risk of reactivation continues after rituximab treatment is concluded and is increased if treatment is halted too early.

Note: All recommendations are category 2A unless otherwise indicated.
INFECTION RISK IN PATIENTS WITH CANCER

DISEASE/ThERAPY EXAMPLES

Allogeneic hematopoietic cell recipients (category 1)

Acute lymphocytic leukemia (category 1)

Alemtuzumab

Consider (category 2B):
- Recipients of purine analog therapy and other T-cell–depleting agents
- Recipients of prolonged corticosteroids or receiving temozolomide + radiation therapy
- Autologous hematopoietic cell recipients

DURATION OF PROPHYLAXIS

For at least 6 mo and while receiving immunosuppressive therapy

Throughout anti-leukemic therapy

For a minimum of 2 mo after alemtuzumab and until CD4 count is greater than 200 cells/mcL

Until CD4 count is greater than 200 cells/mcL

3–6 mo after transplant

ANTIPNEUMOCYSTIS PROPHYLAXIS

High risk for Pneumocystis jirovecii (Pneumocystis carinii)

TMP/SMX (Preferred) (category 1) or Atovaquone, dapsone, pentamidine (aerosolized or IV) if TMP/SMX intolerant

aCategories of risk are based on several factors, including underlying malignancy, whether disease is in remission, duration of neutropenia, prior exposure to chemotherapy, and intensity of immunosuppressive therapy.

eSee Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.

ccRisk of pneumocystis pneumonia (PCP) is related to the daily dose and duration of corticosteroid therapy. Prophylaxis against PCP can be considered in patients receiving the prednisone equivalent of 20 mg or more daily for 4 or more weeks.

ddPCP prophylaxis should be used when temozolomide is administered concomitantly with radiation therapy and should be continued until recovery from lymphocytopenia.

eeTrimethoprim/sulfamethoxazole (TMP/SMX) has additional benefit of activity against other pathogens including Nocardia, Toxoplasma, and Listeria.

ffThe list of agents is alphabetical and does not reflect preference. Consider TMP/SMX desensitization or atovaquone, dapsone, or pentamidine (aerosolized or IV) when PCP prophylaxis is required in patients who are TMP/SMX intolerant. For patients receiving dapsone, consider assessing G6PD levels.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
GENERAL RECOMMENDATIONS FOR VACCINATION IN PATIENTS WITH CANCER

- **General comment**: Live viral vaccines should NOT be administered during chemotherapy.

- **Influenza vaccination**: Patients with hematologic or solid tumor malignancies should receive inactivated influenza vaccine annually.

- **Pneumococcal vaccination**: The conjugate pneumococcal vaccine (PCV13) should be administered to newly diagnosed adults with cancer who are pneumococcal vaccine-naïve, followed by the polysaccharide pneumococcal vaccine (PPSV23) at least 8 weeks later. Subsequent doses of PPSV23 should follow current PPSV23 recommendations for adults at high risk. For patients who have previously received PPSV23, the PCV13 dose should be given at least 1 year after the last PPSV23 dose. For those who require additional doses of PPSV23, the first such dose should be given no sooner than 8 weeks after the PCV13 dose.

- **Meningococcal vaccination**: The addition of serogroup B meningococcal vaccination has been recommended for patients at increased risk for meningococcal disease. These at-risk patients include those with persistent complement component deficiencies or taking eculizumab or patients with anatomic or functional asplenia. Depending on the vaccine, it is available in a 2-dose or 3-dose series.

- **Human Papillomavirus (HPV) vaccination**: The recombinant 3-dose HPV vaccine should be offered to patients up to 26 years of age.

Vaccination should be deferred in patients who are unlikely to respond (eg, receipt of anti-B-cell antibodies within 6 months, induction and consolidation chemotherapy for acute leukemia).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
RECOMMENDED VACCINATION SCHEDULE AFTER AUTOLOGOUS OR ALLOGENEIC HCT

<table>
<thead>
<tr>
<th>Inactivated Vaccines(^{hh})</th>
<th>Recommended Timing After HCT</th>
<th>Number of Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTaP (Daptacel = Diphtheria/Tetanus/Acellular Pertussis)</td>
<td>6–12 mo</td>
<td>3</td>
</tr>
<tr>
<td>Haemophilus influenzae type b (Hib)</td>
<td>6–12 mo</td>
<td>3</td>
</tr>
<tr>
<td>Pneumococcal vaccination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Conjugated 13-valent vaccine</td>
<td>6–12 mo</td>
<td>3</td>
</tr>
<tr>
<td>• Upon completion of PCV13 series, then</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumococcal polysaccharide vaccine 23</td>
<td>≥12 mo</td>
<td>1</td>
</tr>
<tr>
<td>Hepatitis A(^{ii}) (Hep A)</td>
<td>6–12 mo</td>
<td>2</td>
</tr>
<tr>
<td>Hepatitis B(^{ii}) (Hep B)</td>
<td>6–12 mo</td>
<td>3</td>
</tr>
<tr>
<td>Meningococcal conjugate vaccine(^{jj})</td>
<td>6–12 mo</td>
<td>1–2</td>
</tr>
<tr>
<td>Influenza (injectable)</td>
<td>4–6 mo</td>
<td>1, annually(^{mm})</td>
</tr>
<tr>
<td>Inactivated Polio vaccine</td>
<td>6–12 mo</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Live Vaccines</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measles/Mumps/Rubella (MMR)(^{kk})</td>
<td>≥24 mo (if no GVHD or ongoing immunosuppression and patient is seronegative for measles, mumps, and/or rubella)</td>
<td>1–2</td>
</tr>
<tr>
<td>Varicella vaccine(^{kk})</td>
<td>≥24 mo (if no GVHD or ongoing immunosuppression and patient is seronegative for varicella)</td>
<td>1</td>
</tr>
<tr>
<td>Zoster vaccine(^{kk,ii}) (category 3)</td>
<td>May be considered at ≥24 mo (if no GVHD or ongoing immunosuppression)</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^{hh}\)Inactivated vaccines may be given together at the same time. Vaccination may be postponed for patients receiving >20 mg of prednisone.

\(^{ii}\)Strongly consider if clinically indicated. May consider Hep A and B combined vaccine if immunization for both is needed.

\(^{jj}\)Meningococcal B vaccine should be considered for high-risk patients such as patients with asplenia or complement deficiency or patients receiving eculizumab.

\(^{kk}\)Give MMR and varicella/zoster vaccine together or 4 weeks apart.

\(^{ii}\)Because of insufficient data on safety and efficacy of zoster vaccine among HCT recipients, physicians should assess the immune status of each recipient on a case-by-case basis and determine the risk for infection before using the vaccine.

\(^{mm}\)Use of live virus vaccine is contraindicated.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Clinical Presentation

Fever:
- Single temperature equivalent to \(\geq 38.3^\circ C \) orally or
- Equivalent to \(\geq 38.0^\circ C \) orally over 1-h period

Neutropenia:
- \(<500\) neutrophils/mcL or
- \(<1,000\) neutrophils/mcL and a predicted decline to \(\leq 500\) mcL over the next 48 h

Initial Evaluation of Fever and Neutropenia

Site-specific H&P including:
- Intravascular access device
- Skin
- Lungs and sinus
- Alimentary canal
- Perivaginal/perirectal
- Urologic
- Neurologic

Supplementary historical information:
- Major comorbid illness
- Time since last chemotherapy administration
- History of prior documented infections
- Recent antibiotic therapy/prophylaxis
- Medications
- Exposures:
 - Others at home with similar symptoms
 - Pets
 - Travel
 - Tuberculosis exposure
 - Recent blood product administration
 - Marijuana use

Laboratory/radiology assessment:
- CBC including differential, platelets, BUN, electrolytes, creatinine, and LFTs
- Consider chest x-ray, urinalysis, pulse oximetry
- Chest x-ray for all patients with respiratory symptoms

Microbial Evaluation

Blood culture x 2 sets (one set consists of 2 bottles). Options include:
- One peripheral + one catheter (preferred)^a
- Both peripheral
- Both catheter (if unable to obtain a peripheral blood)

Urine culture (if symptoms, urinary catheter, abnormal urinalysis)

Site-specific culture:
- Diarrhea (*Clostridium difficile* assay, enteric pathogen screen)
- Skin (aspirate/biopsy of skin lesions)
- Vascular access cutaneous site with inflammation (consider routine/fungal/mycobacterial)

Viral diagnostics:
- PCR- and DFA-based tests
- Vesicular/ulcerated lesions on skin or mucosa
- Throat or nasopharynx for respiratory virus symptoms, especially during outbreaks

^aPreferred for distinguishing catheter-related infections from secondary sources.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Initial Risk Assessment for Febrile Neutropenic Patients

Low Risk (None of the High-Risk Factors and Most of the Following):
- Outpatient status at time of development of fever
- No associated acute comorbid illness, independently indicating inpatient treatment or close observation
- Anticipated short duration of severe neutropenia (≤100 cells/mcL for ≤7 days)
- Good performance status (ECOG 0-1)
- No hepatic insufficiency
- No renal insufficiency
- MASCC Risk Index score of equal to or greater than 21

Options:
- Home for selected low-risk patients with adequate outpatient infrastructure established or
- Consider ambulatory clinic or
- Hospital

High Risk (Any Factor Listed Below):
- MASCC Risk Index score of less than 21
- Inpatient status at time of development of fever
- Significant medical comorbidity or clinically unstable
- Anticipated prolonged severe neutropenia: ≤100 cells/mcL and ≥7 days
- Hepatic insufficiency (5 times upper limit of normal for aminotransferases)
- Renal insufficiency (a creatinine clearance of <30 mL/min)
- Uncontrolled/progressive cancer
- Pneumonia or other complex infections at clinical presentation
- Alemtuzumab
- Mucositis grade 3-4

Options:
- IV therapy
- Oral therapy (category 1)
- Hospital

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
OUTPATIENT THERAPY FOR LOW-RISK PATIENTS

<table>
<thead>
<tr>
<th>INDICATION</th>
<th>ASSESSMENT</th>
<th>MANAGEMENT</th>
</tr>
</thead>
</table>
| Patient determined to be in low-risk category on presentation with fever and neutropenia^b | • Careful examination
• Review lab results: no critical values
• Review social criteria for home therapy
 ‣ Patient consents to home care
 ‣ 24-h home caregiver available
 ‣ Home telephone
 ‣ Access to emergency facilities
 ‣ Adequate home environment
 ‣ Distance within approximately one hour of a medical center or treating physician's office | Observation period (2–12 h) (category 2B) in order to:
• Confirm low-risk status and ensure stability of patient
• Observe and administer first dose of antibiotics and monitor for reaction
• Organize discharge plans to home and follow-up
• Patient education
• Telephone follow-up within 12–24 h
 | See Treatment and Follow-up (FEV-4)
 |

^bRisk categorization refers to risk of serious complications, including mortality, in patients with neutropenic fever. See Risk Assessment Resources (FEV-D).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
OUTPATIENT THERAPY FOR LOW-RISK PATIENTS

TREATMENT OPTIONS

- Intravenous (IV) antibiotics at home
- Daily long-acting IV agent ± oral therapy
 - Home or office
- Oral therapy only:
 - Ciprofloxacin^e plus amoxicillin/clavulanate^f (category 1)
 - Levofloxacin
 - Moxifloxacin^{e,g} (category 1)

FOLLOW-UP

- Patient should be monitored daily
- Daily assessment (clinic or home visit) for the first 72 h to assess response, toxicity, and compliance; if responding, then telephone follow-up daily thereafter.
- Specific reasons to return to clinic:
 - Any positive culture
 - New signs/symptoms reported by the patient
 - Persistent or recurrent fever at days 3–5
 - Inability to continue prescribed antibiotic regimen (ie, oral intolerance)
 - Office visit for infusion of IV antibiotics

^dCriteria for oral antibiotics: no nausea or vomiting, patient able to tolerate oral medications, and patient not on prior fluoroquinolone prophylaxis.
^eThe fluoroquinolone chosen should be based on reliable Gram-negative bacillary activity, local antibacterial susceptibilities, and the use of quinolone prophylaxis of fever and neutropenia.
^fUse clindamycin for penicillin-allergic patients.
^gNot active against Pseudomonas. Recommended for low-risk patients who may not require Pseudomonas coverage.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
INITIAL EMPIRIC THERAPY FOR FEVER AND NEUTROPENIA

Initial antibiotic therapy should be based on:
• Infection risk assessment
 (See FEV-2)
• Broad-spectrum coverage including antipseudomonal activity
• Potential infecting organisms include multidrug-resistant organisms (MDROs)
• Colonization with or prior infection with methicillin-resistant Staphylococcus aureus (MRSA)
• Site of infection
• Local antibiotic susceptibility patterns
• Organ dysfunction/drug allergy
• Previous antibiotic therapy
• Bactericidal

Uncomplicated
• IV antibiotic monotherapy (choose one):
 ‣ Cefepime (category 1)
 ‣ Imipenem/cilastatin (category 1)
 ‣ Meropenem (category 1)
 ‣ Piperacillin/tazobactam (category 1)
 ‣ Ceftazidime (category 2B)

• Oral antibiotic combination therapy for low-risk patients:
 ‣ Ciprofloxacin + amoxicillin/clavulanate (category 1)
 ‣ Moxifloxacin (category 1)
 ‣ Oral antibiotic regimen recommended should not be used if quinolone prophylaxis was used

Complicated
• IV antibiotic monotherapy (preferred)
• IV combination therapy could be considered especially in cases of resistance

Site-Specific Evaluation and Therapy:

Mouth, Esophagus and Sinus/Nasal (FEV-6)
Abdominal Pain, Perirectal Pain, Diarrhea, Urinary Tract Symptoms (FEV-7)
Lung Infiltrates (FEV-8)
Cellulitis, Vascular Access Devices, Vesicular Lesions, Disseminated Papules or Other Lesions, Central Nervous System Symptoms (FEV-9)
OR
Follow-up (FEV-10)

The fluoroquinolone chosen should be based on reliable Gram-negative bacillary activity, local antibacterial susceptibilities, and the use of quinolone prophylaxis of fever and neutropenia.

Not active against Pseudomonas. Recommended for low-risk patients who may not require Pseudomonas coverage.

Consider local antibiotic susceptibility patterns when choosing empirical therapy. At hospitals where infections by antibiotic-resistant bacteria (eg, MRSA or drug-resistant gram-negative rods) are commonly observed, policies on initial empirical therapy of neutropenic fever may need to be tailored accordingly.

See Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.

Meta-analysis reported increased mortality associated with cefepime in randomized trials of neutropenic fever. Based on the results of the FDA's meta-analyses, the FDA has determined that cefepime remains an appropriate therapy for its approved indications.

Weak Gram-positive coverage and increased breakthrough infections limit utility.

Choice of antibiotic may depend on local antibiotic susceptibility patterns and individual patient syndromes.

In patients treated with escalated dosing, reassess after 48–72 hours and consider de-escalation.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Initial Clinical Presentation (Day 0)

<table>
<thead>
<tr>
<th>Initial Clinical Finding</th>
<th>Evaluation</th>
<th>Additions to Initial Empiric Regimen</th>
</tr>
</thead>
</table>
| Mouth/mucosal membrane | Viral diagnostics
 - Herpes simplex virus (HSV)
 - Culture and Gram stains
 - Fungal
 - Consider leukemic infiltrate
 - Biopsy suspicious lesions | Ensure adequate anaerobic activity
 - Consider anti-HSV therapy
 - Consider systemic antifungal therapy |
| Necrotizing ulceration | Viral diagnostics
 - Herpes simplex virus (HSV)
 - Culture and Gram stains
 - Fungal
 - Consider leukemic infiltrate
 - Biopsy suspicious lesions | Antifungal therapy
 - Fluconazole first-line therapy
 - Voriconazole, posaconazole, or echinocandin if refractory to fluconazole |
| Thrush | Viral diagnostics
 - Herpes simplex virus (HSV)
 - Culture and Gram stains
 - Fungal
 - Consider leukemic infiltrate
 - Biopsy suspicious lesions | Initial therapy guided by clinical findings
 (eg, thrush or perioral HSV)
 - Antifungal therapy for thrush
 - Fluconazole, first-line therapy
 - Voriconazole, posaconazole, or echinocandin if refractory to fluconazole
 - Consider HSV treatment |
| Vesicular lesions | Viral diagnostics
 - Herpes simplex virus (HSV)
 - Culture and Gram stains
 - Fungal
 - Consider leukemic infiltrate
 - Biopsy suspicious lesions | Anti-HSV therapy (category 1) |
| Esophagus | Viral diagnostics
 - Herpes simplex virus (HSV)
 - Culture and Gram stains
 - Fungal
 - Consider leukemic infiltrate
 - Biopsy suspicious lesions | Add vancomycin if periorbital cellulitis noted
 - Add lipid amphotericin B preparation to cover possible aspergillosis and mucormycosis in high-risk patients with suspicious CT/MRI findingsp |
| Sinus/nasal | High resolution sinus CT/orbit MRI
 - ENT/ophthalmologic urgent evaluation
 - Culture and stains/biopsy | Add vancomycin if periorbital cellulitis noted
 - Add lipid amphotericin B preparation to cover possible aspergillosis and mucormycosis in high-risk patients with suspicious CT/MRI findingsp |

1. See Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.
2. See Antifungal Agents (FEV-B) for dosing, spectrum, and specific comments/cautions.
3. See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions. The antivirals are not equal in terms of efficacy, side effects, and resistance.
4. Posaconazole or isavuconazole can be considered for patients who have invasive, refractory infections or who have intolerance to amphotericin B formulations. Posaconazole is not approved by the FDA as either primary or invasive refractory therapy for invasive fungal infections.

Note: All recommendations are category 2A unless otherwise indicated. Participation in clinical trials is especially encouraged.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
<table>
<thead>
<tr>
<th>INITIAL CLINICAL PRESENTATION (DAY 0)</th>
<th>EVALUATION<sup>r</sup></th>
<th>ADDITIONS TO INITIAL EMPIRIC REGIMEN<sup>i,n,o</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain<sup>q</sup></td>
<td>• Abdominal CT (preferred) or ultrasound</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alkaline phosphatase, transaminases, bilirubin, amylase, lipase</td>
<td>• Oral vancomycin (preferred), fidaxomicin, or metronidazole if C. difficile suspected</td>
</tr>
<tr>
<td></td>
<td>• Ensure adequate anaerobic therapy</td>
<td></td>
</tr>
<tr>
<td>Perirectal pain</td>
<td>• Perirectal inspection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Consider abdominal/pelvic CT</td>
<td>• Ensure adequate anaerobic therapy</td>
</tr>
<tr>
<td></td>
<td>• Consider enterococcal<sup>s</sup> coverage</td>
<td>• Consider local care (sitz baths, stool softeners)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>• C. difficile assay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Consider testing for rotavirus and norovirus. Consider stool bacterial cultures and/or parasite exam if travel/lifestyle history or community outbreak indicate exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Consider testing for adenovirus</td>
<td>Oral vancomycin (preferred), fidaxomicin, or metronidazole if C. difficile<sup>l</sup> is highly suspected or confirmed</td>
</tr>
<tr>
<td>Urinary tract symptoms</td>
<td>• Urine culture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Urinalysis</td>
<td>No additional therapy until specific pathogen identified</td>
</tr>
</tbody>
</table>

ⁱSee Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.

ⁿSee Antifungal Agents (FEV-B) for dosing, spectrum, and specific comments/cautions.

<sup:o</sup>See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions. The antivirals are not equal in terms of efficacy, side effects, and resistance.

^qSurgical and other subspecialty (e.g., gastroenterology, interventional radiology) consultations should be considered for these situations as clinically indicated.

^rLab studies include CMV antigens/PCR and abdominal/pelvic CT.

^sEnterococcal colonization must be differentiated from infection. Vancomycin use must be minimized because of the risk of vancomycin resistance.

^lThe safety of probiotics or Fecal Microbiota Transplantation (FMT) in this setting has not been shown.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
INITIAL CLINICAL PRESENTATION (DAY 0)

EVALUATION

- Blood and sputum cultures
- Consider depending on risk:
 - Nasal wash for respiratory viruses, rapid tests
 - Legionella urine Ag test
 - Serum galactomannan or β-glucan test in patients at risk for mold infections (in intermediate to high-risk patients; see [INF-1])
 - CT of chest to better define infiltrates
 - Consider BAL, including galactomannan, particularly if no response to initial therapy or if diffuse infiltrates present
 - Consider diagnostic lung biopsy

ADDITIONS TO INITIAL EMPIRIC REGIMEN

- Azithromycin or fluoroquinolone added to cover atypical bacteria
- Consider adding:
 - Mold-active antifungal agent (in intermediate to high-risk patients; see [INF-1])
 - Antiviral therapy during peak influenza season in local area
 - TMP/SMX if *Pneumocystis jirovecii* is possible etiology
 - Vancomycin or linezolid if MRSA suspected
- Re-evaluate for ability to de-escalate

1. See Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.
2. See Antifungal Agents (FEV-B) for dosing, spectrum, and specific comments/cautions.
3. See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions. The antivirals are not equal in terms of efficacy, side effects, and resistance.
4. Other diagnoses to consider include pulmonary edema, hemorrhage, and drug toxicities.
5. Assess for health care-acquired pneumonia and/or resistant pathogens.
6. Rapid immunofluorescent viral antigen tests may be negative for H1N1 (swine flu).
7. Antiviral susceptibility of influenza strains is variable and cannot be predicted based on prior influenza outbreaks. In cases of seasonal influenza and pandemic strains (eg, H1N1), it is necessary to be familiar with susceptibility patterns and guidelines on appropriate antiviral treatment.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
Initial Clinical Presentation (Day 0)

<table>
<thead>
<tr>
<th>Infection Type</th>
<th>Evaluation</th>
<th>Additions to Initial Empiric Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulitis/skin and soft tissue infections</td>
<td>Consider aspirate or biopsy for culture</td>
<td>Add gram-positive active agents</td>
</tr>
<tr>
<td>Vascular access devices (VAD)</td>
<td>Entry or site inflammation • Swab entry site drainage (if present) for culture • Blood culture from each port of VAD</td>
<td>Vancomycin initially or add if site not responding after 48 h of empiric therapy</td>
</tr>
<tr>
<td></td>
<td>Tunnel infection/port pocket infection, septic phlebitis</td>
<td>Blood culture from each port of VAD • Remove catheter and culture surgical wound • Add vancomycin</td>
</tr>
<tr>
<td>Vesicular lesions</td>
<td>Aspiration or scraping for VZV or HSV PCR, or direct fluorescent antibody (DFA), herpes virus cultures if PCR unavailable</td>
<td>Consider acyclovir, famciclovir, or valacyclovir</td>
</tr>
<tr>
<td>Disseminated papules or other lesions</td>
<td>Aspiration or biopsy for bacterial, fungal, mycobacterial cultures and histopathology, consider evaluation for VZV</td>
<td>• Consider vancomycin • Consider mold-active antifungal therapy in high-risk patients</td>
</tr>
<tr>
<td>Central nervous system symptoms</td>
<td>• CT and/or MRI • Lumbar puncture (if possible) • Neurology consult</td>
<td>• Initial empiric therapy pending infectious disease (ID) consult • Suspected meningitis should include an antipseudomonal beta-lactam agent that readily enters CSF (eg, cefepime, ceftazidime, meropenem) plus vancomycin, plus ampicillin (to cover listeriosis). If meropenem is used, addition of ampicillin is unnecessary • For encephalitis, add high-dose acyclovir with hydration and monitor renal function</td>
</tr>
</tbody>
</table>

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

1. See Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.
2. See Antifungal Agents (FEV-B) for dosing, spectrum, and specific comments/cautions.
3. See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions. The antivirals are not equal in terms of efficacy, side effects, and resistance.
PRINCIPLES OF DAILY FOLLOW-UP

- **Responding/clinically stable**
 - Decreasing fever trend
 - Signs and symptoms of infection are stable or improving
 - Patient is hemodynamically stable

- **Persistently febrile/otherwise hemodynamically stable**

- **Non-responding/clinically unstable**
 - Persistently or intermittently febrile
 - Signs and symptoms of infection are not improving
 - Patient may be hemodynamically unstable
 - Persistent positive blood cultures

- **Documented infection**
 - Neutrophils ≥500 cells/mcL
 - Fever resolved, unknown origin
 - Neutrophils <500 cells/mcL

FOLLOW-UP THERAPY

- **No change in initial empiric regimen.**
 - If initially started appropriately on agent for gram-positive resistant infection, continue course of therapy. Initial antibiotic regimen should be continued at least until neutrophil count is ≥500 cells/mcL and increasing

- **Broaden coverage to include anaerobes, resistant Gram-negative rods, and resistant Gram-positive organisms, as clinically indicated**
 - Consider reevaluation with CT scans
 - Consider adding G-CSF or GM-CSF (category 2B)
 - Ensure coverage for Candida
 - ID consult

- **Consider antifungal therapy with activity against molds for fever continuing ≥4 days of empiric antibiotic therapy**
 - Duration of therapy depends on clinical course, neutropenia recovery, toxicity, and opinions of ID consultants

In the case of prolonged neutropenia (>14 days), consider judicious assessment of empiric therapy.

In patients who defervesced, it may be appropriate in some cases to de-escalate to fluoroquinolone.

The timing to add empirical antifungal therapy varies with the risk of invasive mold infection but generally ranges between 4–7 days of neutropenic fever.

In patients at high-risk for mold infection (neutropenia >10 days, allogeneic hematopoietic cell transplant recipients, high-dose corticosteroids), the panel recommends adding empirical antifungal therapy after the fourth day unless patient is receiving prophylaxis directed against molds.

Antifungal treatment regimens are highly variable and may include preemptive or empiric antifungal therapy or anti-mold azoles.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
FOLLOW-UP THERAPY FOR RESPONDING DISEASE

Documented infection

- Initial antibiotic regimen should generally be continued until neutrophil count is ≥500 cells/mcL and increasing
- Duration of antimicrobial therapy may be individualized based upon:
 - Neutrophil recovery
 - Rapidity of defervescence
 - Specific site of infection
 - Infecting pathogen
 - Patient's underlying illness

SUGGESTED MINIMUM DURATION OF THERAPY FOR DOCUMENTED INFECTION

These are general guidelines and may need to be revised for individual patients.

- Skin/soft tissue: 7–14 d
- Bloodstream infection (uncomplicated)
 - Gram-negative: 10–14 d
 - Gram-positive: 7–14 d
- S. aureus: typically requires 4 weeks after first negative blood culture; treatment may need to be prolonged in cases of endovascular involvement; encourage ID consult
 - Yeast: ≥2 wks after first negative blood culture
- Catheter removal favored for bloodstream infections with Candida, S. aureus, Pseudomonas aeruginosa, Corynebacterium jeikeium, Acinetobacter, Bacillus organisms, atypical mycobacteria, yeasts, molds, vancomycin-resistant enterococci, and Stenotrophomonas maltophilia
- Bacterial sinusitis: 7–14 d
- Catheter removal for septic phlebitis, tunnel infection, or port pocket infection
- Bacterial pneumonia: 7–14 d
- Fungal (mold and yeast):
 - Candida: minimum of 2 wks after first negative blood culture
 - Mold (eg, Aspergillus): minimum of 12 wks
- Viral:
 - HSV/VZV: 7–10 d (category 1); acyclovir, valacyclovir, or famciclovir (uncomplicated, localized disease to the skin)
 - Influenza: Oseltamivir is approved by the FDA for 5 d based on data from ambulatory otherwise healthy individuals with intact immune systems; longer courses (eg, at least 10 d) and until resolution of symptoms should be considered in the highly immunocompromised c c

1See Antibacterial Agents (FEV-A) for dosing, spectrum, and specific comments/cautions.
2See Antifungal Agents (FEV-B) for dosing, spectrum, and specific comments/cautions.
3See Antiviral Agents (FEV-C) for dosing, spectrum, and specific comments/cautions. The antivirals are not equal in terms of efficacy, side effects, and resistance.
4Some centers use a higher dose (eg, 150 mg).

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
ANTIBACTERIAL AGENTS: EMPIRIC GRAM-POSITIVE ACTIVITY

<table>
<thead>
<tr>
<th>Gram-positive Agents<sup>a</sup></th>
<th>DOSE</th>
<th>SPECTRUM<sup>c</sup></th>
<th>COMMENTS/PRECAUTIONS</th>
</tr>
</thead>
</table>
| Vancomycin | 15 mg/kg IV every 12 h^b For *C. difficile*: 125 mg PO every 6 h | Gram-positive organisms, with exception of VRE and a number of rare Gram-positive organisms | IV Formulation
 - Should not be considered as routine therapy for neutropenia and fever unless certain risk factors present (See FEV-D)
 - Dosing individualized with monitoring of levels
 - Loading dose may be considered |
| Daptomycin | 6 mg/kg/d IV^b | • Gram-positive organisms
 • Has in vitro activity against VRE but is not FDA-approved for this indication | • Weekly CPK to monitor for rhabdomyolysis
 • Not indicated for pneumonia due to inactivation by pulmonary surfactant
 • Consider an ID consult if using daptomycin above 6 mg/kg |
| Linezolid | 600 mg PO/IV every 12 h | Gram-positive organisms, including VRE | • Hematologic toxicity (typically with prolonged cases, >2 wks) may occur, thrombocytopenia most common (0.3%–10%)
 • Serotonin syndrome is rare, use cautiously with SSRIs¹
 • Not routinely used in fever and neutropenia, although may impair neutrophil and platelet recovery for extended use
 • Treatment option for VRE and MRSA
 • Peripheral/optic neuropathy with long-term use |

^aThese drugs are not recommended as monotherapy for fever in the setting of neutropenia and should only be added for documented infection with resistant Gram-positive organisms or if certain risk factors are present. (See FEV-D)

^bRequires dose adjustment in patients with renal insufficiency. Dosing variations exist.

^cOnce culture data are available, directed therapy may be initiated following an ID consult as appropriate for gram-positive pathogens.

<sup>Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.</sup>
ANTIBACTERIAL AGENTS: ANTI-PSEUDOMONAL

<table>
<thead>
<tr>
<th>ANTI-PSEUDOMONAL AGENTS</th>
<th>DOSE<sup>b</sup></th>
<th>SPECTRUM</th>
<th>COMMENTS/PRECAUTIONS</th>
</tr>
</thead>
</table>
| Cefepime | 2 g IV every 8 h | • Broad-spectrum activity against most Gram-positive and Gram-negative organisms
 | | • Not active against most anaerobes and *Enterococcus spp.* |
| | | | • Use for suspected/proven CNS infection with susceptible organism
 | | • Increased frequency of resistance among Gram-negative rod isolates at some centers
 | | • Empiric therapy for neutropenic fever (category 1)
 | | • Neurotoxicity may occur |
| Ceftazidime | 2 g IV every 8 h | • Relatively poor Gram-positive activity
 | | • Breakthrough streptococcal infections reported
 | | • Not active against most anaerobes and *Enterococcus spp.* |
| | | | • Use for suspected/proven CNS infection with susceptible organism
 | | • Increased frequency of resistance among Gram-negative rod isolates at some centers
 | | • Empiric therapy for neutropenic fever (category 2B; due to resistance among certain Gram-negative rods) |
| Imipenem/cilastatin sodium | 500 mg IV every 6 h | • Broad-spectrum activity against most Gram-positive, Gram-negative, and anaerobic organisms
 | | • Preferred against extended spectrum beta-lactamase (ESBL) and serious *Enterobacter* infections
 | | • Carbapenem-resistant Gram-negative rod infections are an increasing problem at a number of centers |
| | | | • Use for suspected intra-abdominal source
 | | • Meropenem is preferred over imipenem for suspected/proven CNS infection
 | | • Carbapenem-resistant Gram-negative rod infections are an increasing problem at a number of centers
 | | • Empiric therapy for neutropenic fever (category 1)
 | | • Neurotoxicity may occur |
| Meropenem | 1 g IV every 8 h | | • Use for suspected intra-abdominal source
 | (2 g IV every 8 h for meningitis) | | • Meropenem is preferred over imipenem for suspected/proven CNS infection
 | | • Carbapenem-resistant Gram-negative rod infections are an increasing problem at a number of centers
 | | • Empiric therapy for neutropenic fever (category 1)
 | | • Data are limited, but we would expect that Doripenem, as an anti-pseudomonal beta-lactam like Meropenem, would be efficacious |
| Doripenem | 500 mg IV every 8 h | | • Use for suspected intra-abdominal source
 | | • Not recommended for meningitis
 | | • May result in false-positive galactomannan²
 | | • Empiric therapy for neutropenic fever (category 1) |
| Piperacillin/tazobactam | 4.5 g IV every 6 h | • Broad-spectrum activity against most Gram-positive, Gram-negative, and anaerobic organisms |
| | Some institutions use extended infusion: 3.375 g IV every 8 h | | • Use for suspected intra-abdominal source
 | | • Not recommended for meningitis
 | | • May result in false-positive galactomannan²
 | | • Empiric therapy for neutropenic fever (category 1) |

^bRequires dose adjustment in patients with renal insufficiency. Dosing variations exist.

^dEmerging data may support continuous infusion use for higher potency against resistant cases.

^eNone of these agents are active against MRSA or VRE.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

Continued on next page
ANTIBACTERIAL AGENTS: OTHER

<table>
<thead>
<tr>
<th>OTHER ANTIBACTERIAL AGENTS</th>
<th>DOSE</th>
<th>SPECTRUM</th>
<th>COMMENTS/CAUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Consider single loading dose in critically ill patients with individualized monitoring of levels<sup>b</sup></td>
<td>Activity primarily against Gram-negative organisms</td>
<td>Often used as empiric therapy in seriously ill or hemodynamically unstable patients</td>
</tr>
</tbody>
</table>
| Ciprofloxacin^f in combination with Amoxicillin/clavulanate | 500–750 mg PO every 12 hours or 400 mg IV every 8–12 h^b 875 mg PO every 12 h^g | - Good activity against Gram-negative and atypical (eg, *Legionella spp.*) organisms
- Less active than “respiratory” fluoroquinolones against Gram-positive organisms
- Ciprofloxacin alone has no activity against anaerobes |
- Avoid for empiric therapy if patient recently treated with fluoroquinolone prophylaxis
- Increasing Gram-negative resistance in many centers
- Oral antibiotic combination therapy in low-risk patients |
| Levofloxacin | 500–750 mg oral or IV daily^b | Good activity against Gram-negative and atypical (eg, *Legionella spp.*) organisms
- Improved Gram-positive activity compared to ciprofloxacin
- Levofloxacin no activity against anaerobes
- Moxifloxacin has limited activity against *Pseudomonas* |
- Prophylaxis may increase bacterial resistance and superinfection⁵
- Limited studies as empirical therapy in patients with fever and neutropenia
- Prophylaxis in neutropenic patients^{3,4} |
| Moxifloxacin | 400 mg oral or IV daily | | |
| Metronidazole | 500 mg infused every 6 h or 500 mg PO every 6–8 h | Good activity against anaerobic organisms | |
| Trimethoprim/sulfamethoxazole (TMP/SMX) | Prophylaxis: Single or double strength daily or Double strength 3 times per wk^b Therapy: 15 mg/kg daily in divided doses | Activity against *P. jirovecii* |
- Highly effective as prophylaxis against *P. jirovecii* in high-risk patients⁴
- Monitor for myelosuppression, hepatotoxicity, and hyperkalemia |

^bRequires dose adjustment in patients with renal insufficiency.
^fConsider adding a second agent in cases of severe infection based on local susceptibility pattern.
^gAlthough study data list 500 mg every 8 h, common practice uses amoxicillin/clavulanate 875 every 12 h.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
ANTIBACTERIAL AGENTS – REFERENCES

ANTIFUNGAL AGENTS: AZOLES

<table>
<thead>
<tr>
<th>AZOLESa</th>
<th>DOSE</th>
<th>SPECTRUM</th>
<th>COMMENTS/CAUTIONS</th>
</tr>
</thead>
</table>
| **Fluconazole** | In adults with normal renal function: 400 mg IV/PO daily | • Active against *Candida*
• Active against coccidioidomycosis and *C. neoformans* | • *Candida glabrata* is associated with variable resistance in vitro and *Candida krusei* is always resistant
• Inactive against molds (eg, *Aspergillus* sp., *Zygomycetes*) |
| **Itraconazoleb** | Oral 400 mg daily (aim for trough of >0.25 mcg/mL after 7 d of therapy) | • Active against *Candida*, *Aspergillus* sp., and some of the rarer molds
• Active against dimorphic fungi and *C. neoformans* | • Itraconazole has negative inotropic properties and is contraindicated in patients with significant cardiac systolic dysfunction |
| **Isavuconazole** | • Prophylaxis:
 › Oral tablet 300 mg BID on day 1 and then 300 mg PO every dayc
 › IV 300 mg every 12 h on day 1 and then 300 mg IV every day after
 › 200 mg TID oral solution | • Effective as prophylaxis in neutropenic patients with myelodysplastic syndrome and acute myelogenous leukemia4, and in HCT recipients with significant GVHD5
• Active against *Candida*, *Aspergillus* sp., some *Zygomycetes* sp., and some of the rarer molds
• Active against dimorphic fungi and *C. neoformans* | • Evaluated as treatment of refractory infection (but not FDA-approved) in several invasive fungal diseases
• Data on posaconazole as primary therapy for invasive fungal infections are limited
• Liquid formulation should be administered with a full meal or liquid nutritional supplement or an acidic carbonated beverage. New formulation is better absorbed, though it should be taken with food.
• For patients who cannot eat a full meal or tolerate an oral nutritional supplement alternative antifungal therapy should be considered
• Proton pump inhibitors decrease posaconazole plasma concentration with oral solution |
| **Posaconazoleb** | • IV 6 mg/kg every 12 h x 2 doses, then 4 mg/kg every 12 h; oral 200 mg PO BID (for invasive aspergillosis):1
• IV 6 mg/kg every 12 h x 2, then 3 mg/kg every 12 h for non-neutropenic patients with candidemia2 | • Active against *Candida*, *Aspergillus* sp., and some of the rarer molds
• Active against dimorphic fungi and *C. neoformans*
• Standard of care as primary therapy for invasive aspergillosis (category 1)1,3
• Effective in candidemia in non-neutropenic patients2 | • Poor activity against *Zygomycetes*
• Long-term complications resulting from metabolic irregularities may include increased risk for squamous cell carcinoma and hyperphosphatemia
• Fluorosis may occur with prolonged use and is associated with bone/muscle pain
• Evidence for combination therapy remains limited6
• IV formulation should be used with caution in patients with significant pre-existing renal dysfunction |
| **Voriconazoleb** | • Oral 400 mg daily (aim for trough of >0.25 mcg/mL after 7 d of therapy) | • Active against *Candida*, *Aspergillus* sp., and some of the rarer molds
• Active against dimorphic fungi and *C. neoformans*
• Inactive against molds (eg, *Aspergillus* sp., *Zygomycetes*)
• Standard of care as primary therapy for invasive aspergillosis (category 1)1,3 | • Can be considered in patients intolerant or refractory to first-line anti-mold therapy |

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.

AZOLES
A. inhibit fungal cell membrane synthesis and inhibit cytochrome P450 isoformes that may lead to impaired clearance of other drugs metabolized by this pathway. Fluconazole is a less potent inhibitor of cytochrome P450 isoformes than the mold-active azoles. Drug-drug interactions are common and need to be closely monitored (consult package inserts for details). Reversible liver enzyme abnormalities are observed. QT prolongation and interactions have been reported.
B. Therapeutic drug monitoring (TDM) is an ongoing area of research; TDM should be considered in consultation with ID specialists. ([See Discussion](#)).

CONTINUED ON NEXT PAGE
<table>
<thead>
<tr>
<th>AMPHOTERICIN B FORMULATIONS<sup>e</sup></th>
<th>DOSE</th>
<th>SPECTRUM</th>
<th>COMMENTS/CAUTIONS<sup>g</sup></th>
</tr>
</thead>
</table>
| Amphotericin B deoxycholate (AmB-D) | Varies by indication, generally 0.5–1.5 mg/kg/d | Broad spectrum of antifungal activity including *Candida*, *Aspergillus* sp., (excluding *Aspergillus terreus*), *Zygomycetes*, rarer molds, *Cryptococcus neoformans*, and dimorphic fungi | • Substantial infusional and renal toxicity including electrolyte wasting
• Saline loading may reduce nephrotoxicity
• Infusional toxicity may be managed with anti-pyretics, an anti-histamine, and meperidine (for rigors) |
| Amphotericin B lipid complex (ABLC) | 5 mg/kg/d IV for invasive mold infections | Reduced infusional and renal toxicity compared to AmB-D |
| Liposomal amphotericin B (L-AMB) | 3–5 mg/kg/d IV^f | Reduced infusional and renal toxicity compared to AmB-D |

^dCan be considered for prophylaxis with ID consult for appropriate dosing recommendations.

^eBroad spectrum of antifungal activity. Significant infusional and renal toxicity, less so with lipid formulations.

^fThe vast majority of subjects in this trial had invasive aspergillosis; optimal dosing of L-AMB for other mold infections (such as mucormycosis with 3 mg/kg/d IV) was as effective but less toxic than 10 mg/kg/d as initial therapy for invasive mold infections.

^gSlowing the rate of infusion is an additional way to manage amphotericin infusion reactions.
Antifungal Agents: Echinocandins

<table>
<thead>
<tr>
<th>Echinocandins</th>
<th>DOSE</th>
<th>Spectrum</th>
<th>Comments/Cautions</th>
</tr>
</thead>
</table>
| **Anidulafungin** | 200 mg IV x 1 dose, then 100 mg/d IV | Active against Candida and Aspergillus sp. Not reliable or effective against other fungal pathogens. | • Empiric therapy for candidemia and invasive candidiasis (category 1), pending susceptibility data
• Efficacy established compared to fluconazole as primary therapy for candidemia and invasive candidiasis
• Excellent safety profile |
| **Caspofungin** | 70 mg IV x 1 dose, then 50 mg IV daily; (35 mg IV daily for patients with moderate liver disease)
• Some investigators use 70 mg IV daily as therapy for aspergillosis in salvage cases | | • Primary therapy for candidemia and invasive candidiasis (category 1)
• Treatment for invasive, refractory aspergillosis. Similar efficacy compared to AmB-D as primary therapy for candidemia and invasive candidiasis but significantly less toxic
• 45% success rate as therapy for invasive, refractory aspergillosis
• Similar efficacy, but less toxic compared with L-AMB as empirical therapy for persistent neutropenic fever
• Excellent safety profile |
| **Micafungin** | 100 mg/d IV for candidemia and 50–100 mg/d IV as prophylaxis
• 150 mg/d IV used at some centers for Aspergillus sp. infection in salvage cases | | • Primary therapy for candidemia and invasive candidiasis (category 1)
• Similar efficacy compared to caspofungin and compared to L-AMB as primary therapy for candidemia and invasive candidiasis
• Excellent safety profile |

\(^h\)A number of centers use combination voriconazole and an echinocandin for invasive aspergillosis based on clinical data. Evidence for combination therapy remains limited.
ANTIVIRAL AGENTS

<table>
<thead>
<tr>
<th>AGENT</th>
<th>COMMON INDICATION</th>
<th>SPECTRUM</th>
<th>COMMENTS/CAUTIONS</th>
</tr>
</thead>
</table>
| Acyclovir | • Prophylaxis\(^b\): HSV (400–800 mg PO BID); VZV in allogeneic HCT recipients (800 mg PO BID)\(^1\); CMV in allogeneic HCT recipients (800 mg PO QID)\(^2,\(^c\) for patients unable to tolerate oral therapy, 250 mg/m\(^2\) IV every 12 h
• Post-VZV exposure prophylaxis: 800 mg PO 5 times daily
• Treatment: significant mucocutaneous HSV (5 mg/kg IV every 8 h for 7–10 days); single dermatomal VZV (800 mg PO 5 times daily or 10 mg/kg IV every 8 h for 7–10 days); disseminated HSV or VZV including viral encephalitis (10 mg/kg IV every 8 h)\(^3\) | HSV, VZV | • Hydration to avoid crystal nephropathy with high dose
• Dosing based upon ideal body weight |
| Famciclovir | Prophylaxis: HSV or VZV (250 mg PO BID)
Treatment: HSV (250 mg PO TID) or VZV (500 mg PO TID)\(^5,\(^6\) | HSV, VZV | No data for oncologic related prophylaxis |
| Ganciclovir | • Preemptive therapy for CMV: 5 mg/kg every 12 h for 2 weeks; if CMV remains detectable, further ID evaluation may be required
• Treatment: CMV disease (5 mg/kg every 12 h for 2 weeks followed by 5–6 mg/kg daily for at least an additional 2–4 weeks and resolution of all symptoms). Consider adding IVIG for CMV pneumonia. Formulations and dosages of IVIG vary in different series" | CMV, HSV, VZV, HHV-6 | May cause bone marrow suppression |
| Valacyclovir | • Prophylaxis\(^b\): HSV or VZV (500 mg PO BID or TID) CMV in allogeneic HCT recipients (2 gm PO QID)\(^c,\(^4\)
• Treatment: HSV or VZV (Valacyclovir 1 gm PO TID)\(^3\) | HSV, VZV | |
| Valganclovir | • Prophylaxis: CMV (900 mg daily)\(^d\)
• Preemptive therapy for CMV: Induction with 900 mg PO BID for at least 2 weeks and until negative test; consider additional 900 mg PO daily for at least 7 days after a negative test for maintenance | CMV, HSV, VZV, HHV-6 | May cause bone marrow suppression |

\(^a\)Requires dose adjustment in patients with renal insufficiency.
\(^b\)Antiviral prophylaxis should be targeted to specific high-risk patients (see INF-3). In non-transplant high-risk patients, prophylaxis should be administered to patients seropositive for HSV or VZV (or with a history of chicken pox). In HCT recipients, prophylaxis is only indicated if either the donor or recipient is seropositive for the virus in question. The indicated doses for antiviral agents are for adults with normal renal function; consult package insert for dose modification in pediatric patients and in patients with renal impairment. Prophylactic antiviral doses may be higher than those routinely used in immunocompetent persons (for example, for recurrent cold sores); there is substantial variability in the prophylactic doses of acyclovir used in different clinical trials in patients with hematologic malignancies and in HCT recipients.
\(^c\)High-dose acyclovir and valacyclovir have been used as prophylaxis for CMV. Because these agents have weak activity against CMV, a strategy of CMV surveillance and preemptive therapy with ganciclovir, valganclovir, or foscarnet is required among patients at high risk for CMV disease.
\(^d\)In general, the strategy of CMV surveillance testing by PCR followed by preemptive anti-CMV therapy for a positive result is favored over universal long-term prophylaxis in allogeneic HCT patients.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
ANTIVIRAL AGENTS\(^a\)

<table>
<thead>
<tr>
<th>AGENT</th>
<th>COMMON INDICATION</th>
<th>SPECTRUM</th>
<th>COMMENTS/CAUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cidofovir(^e)</td>
<td>Treatment: Cidofovir 5 mg/kg IV every wk for 2 wks, followed by cidofovir 5 mg/kg every 2 wks with probenecid 2 gm PO 3 h before the dose, followed by 1 gm PO 2 h after the dose and 1 gm PO 8 h after the dose and IV hydration</td>
<td>CMV, HZV, VZV, adenovirus</td>
<td>Ocular toxicity, bone marrow toxicity, hydration, and probenecid required to reduce nephrotoxicity Third-line for CMV</td>
</tr>
<tr>
<td>Foscarnet</td>
<td>Prophylaxis for CMV: 60 mg/kg IV every 8–12 h for 7 d, followed by 90–120 mg/kg IV daily until day 100 after HCT(^d,7,8) Preemptive therapy for CMV: Induction for 2 wks, either 60 mg/kg IV every 8 h or 90 mg/kg IV every 12 h. Therapy: Acyclovir-resistant HSV (40 mg/kg every 8 h for 7–10 days); CMV disease (90 mg/kg every 12 h for 2 wks followed by 120 mg/kg daily for at least an additional 2–4 wks and resolution of all symptoms). Add IVIG for CMV pneumonia.</td>
<td>HSV, VZV, CMV, HHV-6</td>
<td>Drug of choice for acyclovir-resistant HSV and VZV and ganciclovir-resistant CMV; nephrotoxic; monitor electrolytes</td>
</tr>
<tr>
<td>Oseltamivir(^f)</td>
<td>Prophylaxis: 75 mg PO daily(^g,9) Treatment: 75 mg BID</td>
<td>Influenza A & B</td>
<td>May cause nausea (improved when taken with food)</td>
</tr>
<tr>
<td>Zanamivir(^f)</td>
<td>Prophylaxis: 2 oral inhalations (5 mg/inhalation) daily Treatment: 2 oral inhalations (5 mg/inhalation) BID</td>
<td>Influenza A & B</td>
<td>Duration influenced by nature of exposure (ongoing vs. time limited); may cause bronchospasm</td>
</tr>
</tbody>
</table>

\(^a\)Requires dose adjustment in patients with renal insufficiency.
\(^d\)In general, the strategy of CMV surveillance testing by PCR followed by preemptive anti-CMV therapy for a positive result is favored over universal long-term prophylaxis in allogeneic HCT patients.
\(^e\)A dose of 1 mg/kg administered three times a week is common for less severe adenovirus infections.
\(^f\)Consider peramivir for patients who cannot have oral oseltamivir or inhaled zanamivir.
\(^g\)Prophylaxis among highly immunocompromised persons during community and nosocomial outbreaks of influenza A should be considered.
<table>
<thead>
<tr>
<th>AGENT</th>
<th>COMMON INDICATION</th>
<th>SPECTRUM</th>
<th>COMMENTS/CAUTIONS</th>
</tr>
</thead>
</table>
| Intravenous immuno-globulin (IVIG) | Doses of IVIG vary among different studies and different viral illnesses. A dose of 400–500 mg/kg administered daily for 5 days is common for parvovirus B19-associated disease. For CMV pneumonia and RSV disease, adjunctive IVIG (400 mg/kg) every other day for 3–5 doses is commonly administered; the optimal dosing schedule is undefined. | RSV, Parvovirus B19, CMV | • Pathogen-specific immunoglobulin or monoclonal antibodies may be considered
• CMV-specific IVIG is not more efficacious than standard IVIG |
| Ribavirin (category 3) | Consider for treatment of RSV disease: 6 gm administered by continuous inhalation via SPAG-2 nebulizer every 12–18 h daily or 2 g over 2 h TID; or 600–800 mg PO BID; may be paired with IVIG (400–500 mg/kg every other day) | RSV | • Experience in immunocompromised adults with RSV disease is limited, but should be considered given potential morbidity and mortality associated with RSV infection
• Ribavirin is teratogenic; precautions are required during administration (see package insert) |
| Entecavir | 0.5 mg PO every day (nucleoside-treatment-naïve with compensated liver disease); or 1 mg PO every day (lamivudine-refractory or known lamivudine resistance mutations or decompensated liver disease) | HBV | • Potential for HBV resistance:
 › Lamivudine: high (especially as monotherapy)
 › Tenofovir: none reported to date
 › Entecavir: low
• Dose adjustment recommended for renal impairment
• Lactic acidosis and severe hepatomegaly with steatosis reported with nucleoside analogues
• Tenofovir potential for nephrotoxicity; monitor for renal function
Entecavir and tenofovir monotherapy are generally preferred. Choice of agent is heavily influenced by the overall condition of the patient, renal insufficiency, and the type of chemotherapy planned. Combination therapy is not generally recommended unless viral load is significantly elevated. |
| Lamivudine | 100 mg PO every day | | |
| Tenofovir DF | 300 mg PO every day | | |

\(^{b}\)Inhaled ribavirin is only FDA approved for hospitalized infants and young children with severe lower respiratory tract RSV disease.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged.
ANTIVIRAL AGENTS – REFERENCES

RISK ASSESSMENT RESOURCES

USING THE MASCC RISK-INDEX SCORE

• Using the visual analogue score, estimate the patient's burden of illness at the time of initial clinical evaluation. No signs or symptoms or mild signs or symptoms are scored as 5 points; moderate signs or symptoms are scored as 3 points. These are mutually exclusive. No points are scored for severe signs or symptoms or moribund.
• Based on the patient's age, past medical history, present clinical features, and site of care (input/output when febrile episode occurred), score the other factors in the model and total the sum.

BURDEN OF ILLNESS

How sick is the patient at presentation?

No signs or symptoms Mild signs or symptoms Moderate signs or symptoms Severe signs or symptoms Moribund

Estimate the burden of illness considering all comorbid conditions

MASCC RISK-INDEX SCORE/MODEL

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burden of Illness</td>
<td></td>
</tr>
<tr>
<td>• No or mild symptoms</td>
<td>5</td>
</tr>
<tr>
<td>• Moderate symptoms</td>
<td>3</td>
</tr>
<tr>
<td>• No hypotension</td>
<td>5</td>
</tr>
<tr>
<td>• No COPD</td>
<td>4</td>
</tr>
<tr>
<td>• Solid tumor or hematologic malignancy with no previous fungal infection</td>
<td>4</td>
</tr>
<tr>
<td>• No dehydration</td>
<td>3</td>
</tr>
<tr>
<td>• Outpatient status</td>
<td>3</td>
</tr>
<tr>
<td>• Age <60 years</td>
<td>2</td>
</tr>
</tbody>
</table>

Discussion

NCCN Guidelines Inde

Infections Table of Contents

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview .. MS-2

Literature Search Criteria and Guidelines Update Methodology .. MS- Error! Bookmark not defined.

Host Factors That Predispose Patients to Infectious Complications .. MS-3

Immunodeficiencies Associated With Primary Malignancy MS-3
Neutropenia .. MS-4
Disruption of Mucosal Barriers ... MS-4
Splenectomy and Functional Asplenia ... MS-5
Corticosteroids and Other Lymphotoxic Agents ... MS-5
Hematopoietic Cell Transplantation ... MS-7

NCCN Recommendations for Categories of Infection Risk MS-8

Prevention of Infectious Diseases ... MS-9

Antibacterial Prophylaxis .. MS-9
Antifungal Prophylaxis .. MS-13
Prophylaxis for Pneumocystis jirovecii ... MS-19
Antiviral Prophylaxis and Preemptive Antiviral Therapy MS-20
Vaccination ... MS-29
Protected Environments ... MS-32

Management of Neutropenic Patients With Fever MS-32

Initial Evaluation .. MS-32
Cultures ... MS-33
Initial Empiric Antibiotic Therapy ... MS-33

Outpatient Management of Patients With Neutropenic Fever MS-38

Empiric Antifungal Therapy in Persistent Neutropenic Fever MS-42

Follow-up of Patients With Neutropenic Fever .. MS-44

Site-Specific Evaluation and Treatment of Infections MS-48

Mouth and Esophageal Infections ... MS-48
Sinus or Nasal Infections .. MS-49
Abdominal, Rectal, and Liver Infections ... MS-50
Lung Infections .. MS-53
Skin and Soft Tissue Infections ... MS-58

Vascular Access Device Infections ... MS-59

Central Nervous System Infections ... MS-60

Therapy for Invasive Fungal Infections .. MS-63

Invasive Candidiasis .. MS-63
Invasive Aspergillosis .. MS-64
Zygomycosis and Other Invasive Mold Infections MS-66
Early Diagnosis of Invasive Mold Infections ... MS-67

Summary .. MS-68

References .. MS-70
Overview

There is an increased risk of infection in patients with cancer that results in higher morbidity and mortality. In certain instances, the malignancy itself can predispose patients to severe or recurrent infections. Neutropenia has been recognized as a major risk factor for the development of infections in patients with cancer undergoing chemotherapy. Effective strategies to anticipate, prevent, and manage these infectious complications have led to improved outcomes. Due to advances in antimicrobial therapy, it is less common for patients with acute leukemia or patients undergoing hematopoietic cell transplantation (HCT) to die from infections during the neutropenic period.

Although neutropenia remains a key risk factor for infections, other immunocompromised states pose at least equal risk. Allogeneic HCT recipients with neutrophil recovery who require intensive immunosuppressive therapy (IST) for graft-versus-host disease (GVHD) are an example of non-neutropenic patients at great risk for common bacterial, viral, and opportunistic infections. The spectrum of infectious diseases in allogeneic HCT recipients with GVHD is distinct from neutropenia. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Prevention and Treatment of Cancer-Related Infecions discuss infections in neutropenic and immunocompromised non-neutropenic patients with cancer. In addition to corticosteroids and purine analogs, the increased use of monoclonal antibodies, proteasome inhibitors, and other emerging cancer therapeutics has generated an ever more complex assessment of the immunocompromised patient. The scope of this guideline is to address infections that may be seen in all these immunocompromised populations.

The NCCN guidelines for the prevention and treatment of cancer-related infections characterize the major pathogens to which patients with cancer are susceptible, with a focus on the prevention, diagnosis, and treatment of major common and opportunistic infections. The guidelines are largely divided into four sections comprising discussions on the following: 1) risk factors for infection (major host factors that predispose patients to infectious diseases); 2) prevention of infectious complications (including the use of antimicrobial prophylaxis and preemptive therapy); 3) management of neutropenic fever; and 4) management of site-specific infections (eg, pneumonia, abdominal infections, catheter-associated infections). These guidelines provide a framework for prevention and treatment of infections that should be applied in conjunction with careful, individual patient evaluation and with an understanding of both the host factors that predispose patients to specific infectious diseases and antimicrobial susceptibility patterns. Consultation with an infectious disease expert is highly recommended.

Literature Search Criteria and Guidelines Update Methodology

Prior to the update of this version of the NCCN Guidelines for Prevention and Treatment of Cancer-Related Infecions, an electronic search of the PubMed database was performed to obtain key literature published between 01/01/2013 and 09/10/2015, using the following search terms: cancer related infections OR cancer infections OR cancer induced infections OR prevention of cancer related infections OR cancer and virus OR cancer and bacterial OR cancer and fungal OR cancer and microbial OR cancer and hepatitis OR cancer and influenza OR cancer and candida OR cancer and aspergillus OR cancer and clostridium OR cancer and staphylococcus OR cancer and pseudomonas OR cancer and clostridium OR cancer and pneumocystis OR cancer and herpes OR cancer and varicella zoster OR cancer and
HIV. The PubMed database was chosen as it remains the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature.17

The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV; Guideline; Meta-Analysis; Randomized Controlled Trial; Systematic Reviews; and Validation Studies.

The PubMed search resulted in 1162 citations and their potential relevance was examined. The data from key PubMed articles as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the panel have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). Recommendations for which high-level evidence is lacking are based on the panel’s review of lower-level evidence and expert opinion.

The complete details of the Development and Update of the NCCN Guidelines are available on the NCCN webpage.

Host Factors That Predispose Patients to Infectious Complications

Immunodeficiencies Associated With Primary Malignancy

Certain malignancies are inherently associated with immune deficits. Patients with hematologic malignancies (eg, chronic and acute leukemias, non-Hodgkin’s lymphomas [NHL], myelodysplastic syndromes [MDS]) may be leukopenic due to infiltration of the marrow with malignant cells or due to a dysfunctional marrow. Patients with chronic lymphocytic leukemia (CLL) frequently have hypogammaglobulinemia leading to increased susceptibility to encapsulated bacteria, principally *Streptococcus pneumoniae*.18 Such patients may have recurrent sinopulmonary infections and septicemia. Patients with multiple myeloma are often functionally hypogammaglobulinemic; the total level of immunoglobulin production may be elevated, but the repertoire of antibody production is restricted. Savage et al19 noted a biphasic pattern of infection among patients with multiple myeloma. Infections by *Streptococcus pneumoniae* and *Haemophilus influenzae* occurred early in the disease and in patients with disease that responds to chemotherapy, whereas infections by *Staphylococcus aureus* and gram-negative pathogens occurred more commonly in advanced disease and during neutropenia.

Patients with advanced or refractory malignancy have a greater risk of infectious complications than those who respond to therapy. Refractory hematologic malignancies can be associated with marrow failure caused by the underlying disease or from the multiple lines of prior cytotoxic therapy or IST. Patients with CLL who receive multiple chemotherapeutic regimens are at a significantly increased risk for developing severe infections.20 A retrospective study showed that nearly 90% of heavily pretreated patients (median number of prior regimens, 3; range, 1–8) with fludarabine-refractory CLL experienced serious infectious complications requiring hospitalization.21 These infections resulted from bacterial, viral, fungal, and opportunistic pathogens, including *Pneumocystis jirovecii* (formerly called *Pneumocystis carinii*).21

Solid tumors may predispose patients to infection because of anatomic factors. Tumors that overgrow their blood supply become necrotic, thus forming a nidus for infection. Endobronchial tumors may cause recurrent postobstructive pneumonias. Abdominal tumors may obstruct the genitourinary or hepatobiliary tracts, predisposing patients to pyelonephritis and cholangitis, respectively. Direct invasion through the colonic mucosa is associated with local abscess formation and sepsis.
by enteric flora. Patients undergoing surgery for malignancies may be at high risk for infectious complications as a result of the type of surgery (eg, esophagectomy, hepatobiliary reconstruction), the extent of tumor burden, their preoperative performance status, and any previous surgery, chemotherapy, and radiation therapy. Patients with advanced malignancy are also commonly malnourished, which further increases the risk of infection.

Neutropenia

Factors that predispose the neutropenic patient to infection include the absence of granulocytes; the disruption of the integumentary, mucosal, and mucociliary barriers; and the inherent microbial flora shifts that accompany severe illness and antimicrobial usage. The signs and symptoms of infection are often absent or muted in the absence of neutrophils, but fever remains an early, although nonspecific, sign. Approximately 50% to 60% of patients who become febrile have an established or occult infection. Roughly 10% to 20% of patients with neutrophil counts less than 100 cells/mcL will develop a bloodstream infection. Primary sites of infection are the alimentary tract (ie, mouth, pharynx, esophagus, large and small bowel, rectum), sinuses, lungs, and skin.

Initial infections early in the course of fever and neutropenia are primarily bacterial, whereas antibiotic-resistant bacteria, yeast, other fungi, and viruses are common causes of subsequent infections. Coagulase-negative staphylococci, *S aureus*, viridans group streptococci, and enterococci are the major gram-positive pathogens. Coilorms (eg, *Escherichia coli*, *Klebsiella* species, *Enterobacter* species) and *Pseudomonas aeruginosa* are the most common gram-negative infections complicating neutropenia. Herpes simplex virus (HSV), respiratory syncytial virus (RSV), parainfluenza, and influenza A and B are occasionally initial pathogens. Infections due to *Candida* species may occur later in the course of neutropenia, particularly as a consequence of gastrointestinal (GI) mucositis. *Aspergillus* species and other filamentous fungi are important causes of morbidity and mortality in patients with severe and prolonged neutropenia. Deaths resulting from infections identified at the onset of fever during neutropenia remain uncommon, and most infection-associated deaths result from subsequent infections during the course of neutropenia.

A seminal study demonstrated that as the neutrophil count decreases below 500 cells/mcL (defined as neutropenia), the susceptibility to infection increases. The frequency and severity of infection are inversely proportional to the neutrophil count. The risks of severe infection and bloodstream infection are greatest when the neutrophil count is less than 100 cells/mcL. The rate of decline of the neutrophil count and the duration of neutropenia are also critical factors that measure bone marrow reserve and are highly correlated with the severity of infection and clinical outcome.

Disruption of Mucosal Barriers

The mucosal linings of the GI, sinopulmonary, and genitourinary tracts constitute the first line of host defense against a variety of pathogens. Mucosal immunity is impaired by chemotherapy and radiation therapy. When the physical protective barrier conferred by the epithelial lining is compromised, local flora may invade. Furthermore, neutropenia and loss of the epithelial cell anatomic barrier may predispose patients to typhlitis (neutropenic enterocolitis). Chemotherapy-related GI mucositis predisposes patients to bloodstream infections by viridans group streptococci, gram-negative rods, and *Candida* species.
Splenectomy and Functional Asplenia

In the spleen, rapid antigen presentation occurs, which leads to the production of opsonizing antibodies by B-cells. The removal of non-opsonized bacteria protects against encapsulated bacteria to which the patient is not yet immune. Splenic irradiation results in functional asplenia, which predisposes patients to pneumococcal sepsis. Functional asplenia is also a late complication of severe GVHD. Thus, in allogeneic HCT recipients, fever in the late transplant period must be evaluated promptly (similar to patients with asplenia) because of the risk of overwhelming infection by encapsulated pathogens.

Overwhelming sepsis by encapsulated bacteria is also the principal risk factor for infection in asplenic patients. The most common pathogen is *Streptococcus pneumoniae*, but other pathogens include *H influenzae* and *Neisseria meningitidis*. The NCCN Guidelines provide recommendations for immunization with the pneumococcal polysaccharide and meningococcal vaccines (see Vaccination).

Corticosteroids and Other Lymphotoxic Agents

Corticosteroids

High-dose corticosteroids (>20 mg prednisone daily) have profound effects on the distribution and function of neutrophils, monocytes, and lymphocytes. In patients with cancer, corticosteroids are seldom the only immunosuppressive agents administered, and it is therefore difficult to delineate the degree of impairment in host defense elicited by the corticosteroid regimen alone. The risk of infections is a function of the dose and duration of corticosteroids, coexisting immunodeficiencies (such as neutropenia and use of other immunosuppressive agents), and the status of the malignancy. Corticosteroids blunt fever and local signs of infection, such as peritonitis.

Fludarabine

Lymphocyte-depleting agents increase the risk of common and opportunistic infectious diseases. Fludarabine is a fluorinated analogue of adenine that has been used in a variety of hematologic malignancies. Fludarabine is a lymphotoxic compound, primarily affecting CD4+ lymphocytes. In previously treated patients with CLL, fludarabine treatment (especially in combination with other IST) was associated with infections such as listeriosis, mycobacterial infections, and opportunistic fungal and viral infections. Additionally, fludarabine was associated with infections caused by *Pneumocystis jirovecii*, which is the causative agent of pneumocystis pneumonia (PCP), also known as pneumocystosis. When used alone, purine analogs (eg, fludarabine, clofarabine) are associated with an increased risk for infection; risk of infection is further escalated when purine analogs are combined with other immunosuppressive or cytotoxic agents. The combination of fludarabine and corticosteroids is more immunosuppressive than either agent alone. Fludarabine plus prednisone results in a uniform depression of CD4+ cells that may persist for several months after completion of therapy. In one series, 14 of 264 patients (5%) with CLL developed either PCP or listeriosis, and 3 cases occurred more than 1 year after therapy in patients who were in remission.

Alemtuzumab

An increasing number of allogeneic HCT recipients and patients with hematologic malignancies are being treated with novel monoclonal antibodies that cause a depletion of lymphocyte subsets. Alemtuzumab is a humanized monoclonal antibody that targets CD52, which is abundantly expressed on most normal and malignant B- and T-lymphocytes. This agent has been used most extensively in patients with CLL who have disease that has failed fludarabine therapy. Alemtuzumab has been associated with grade 3 or 4 neutropenia in about 40% of patients with previously untreated CLL and in 56% to 78%
of patients with fludarabine-refractory disease.\(^{38-41}\) Alemtuzumab is associated with prolonged and severe lymphopenia in most patients. Prescribing information indicates that four weeks after initiation of alemtuzumab, the median CD4+ count was 0 cells/mcL and 6 months after discontinuation, the count was 238 cells/mcL in previously untreated patients.\(^{38}\) The CD8+ cell counts changed in a similar manner. In previously treated patients receiving alemtuzumab, CD4+ and CD8+ counts may not recover to baseline levels until more than 1 year after completion of therapy.\(^{38}\) Infections pose a concern for morbidity and/or mortality in alemtuzumab recipients, particularly for patients with heavily pretreated, fludarabine-refractory disease.\(^{21,40,42}\) Bacterial, viral, fungal, mycobacterial, and \textit{Pneumocystis jirovecii} infections have been reported with alemtuzumab.\(^{40,42,43}\)

Anti-infective prophylaxis against herpes viruses and PCP is recommended in patients receiving alemtuzumab treatment (see \textit{Antiviral Prophylaxis and Preemptive Antiviral Therapy: Cytomegalovirus}). Other compounds known to cause lymphopenia (eg, proteasome inhibitors) are associated with an increased risk of herpes zoster reactivation; therefore, prophylaxis with acyclovir, famciclovir, or valacyclovir is recommended.

Anti-CD20 Monoclonal Antibodies

Anti-CD20 monoclonal antibodies (eg, rituximab, ofatumumab) are widely used in the treatment of patients with B-cell lymphoid malignancies.\(^{50,51}\) The use of these monoclonal antibodies has been associated with increased risks for hepatitis B virus (HBV) reactivation, which can lead to fulminant hepatitis, liver failure, and/or death.\(^{51-58}\) Antiviral prophylaxis is generally recommended for patients who test positive for HBV surface antigen (see \textit{Antiviral Prophylaxis and Preemptive Antiviral Therapy: Hepatitis B virus}).

The use of anti-CD20 monoclonal antibodies in patients with B-cell malignancies has been associated with rare instances of progressive multifocal leukoencephalopathy (PML).\(^{51,52}\) PML is a demyelinating disease of the central nervous system (CNS) resulting from reactivation of the John Cunningham (JC) virus, and occurs in severely immunocompromised individuals. Though rare, PML is most often fatal. In reports of PML potentially associated with rituximab treatment in patients with B-cell malignancies, rituximab was typically given in combination with chemotherapy regimens or patients who had received prior immunosuppressive regimens.\(^{59-66}\) Moreover, patients who developed PML often presented with low CD4+ counts or abnormal (low) CD4+/CD8+ ratio,\(^{59,61,64,66}\) which points to a critical role of T-cell immunity in suppressing reactivation of the JC virus.
Hematopoietic Cell Transplantation

Autologous HCT

Autologous HCT recipients generally have fewer infectious complications than allogeneic transplant recipients. Most infections in autologous HCT recipients occur during neutropenia or within the first few months after transplantation before reconstitution of cellular immunity. However, compared to unmanipulated autologous HCTs, CD34+ cell enrichment leads to a substantial reduction in T cells, natural killer cells, and monocytes, which delays immune reconstitution. Recipients of CD34+ cell-enriched autologous HCT appear to have a similar level of risk as allogeneic HCT recipients for contracting CMV and other opportunistic infections. Severe or ulcerative mucositis, which develops as a result of myeloablative high-dose therapy administered prior to HCT, is associated with the occurrence of bacteremia in autologous HCT recipients.

Recently, a multicenter prospective study evaluated the potential role of granulocyte-colony stimulating factor (G-CSF) responsiveness in predicting the occurrence of infections in patients with hematologic malignancies undergoing high-dose therapy and autologous HCT. Responsiveness to G-CSF was determined by the administration of a single dose of G-CSF after completion of high-dose therapy (but prior to HCT), and measuring the induced leukocyte peak occurring 12 to 14 hours after the G-CSF dose. G-CSF responsiveness showed a significant inverse correlation with incidences of febrile neutropenia and infections (ie, higher responsiveness associated with lower infection rates), and was shown to be the only independent predictor of infections based on multivariate analysis.

Allogeneic HCT

The spectrum of pathogens to which allogeneic HCT recipients are most susceptible follows a timeline corresponding to the predominant immune defects. In the first month after allogeneic HCT (pre-engraftment period), neutropenia and breakdown of the mucocutaneous barrier comprise the principal host defense defect, which predisposes patients to bacterial and fungal infections. In addition, reactivation of HSV can often occur during this period. After myeloid engraftment, qualitative dysfunction of phagocytes persists due to corticosteroid and other immunosuppressive agents. The risk of infection by opportunistic viruses and filamentous fungi (molds) during this period is strongly associated with the severity of GVHD and with the requirement for potent immunosuppressive regimens.

Susceptibility to infections during the early post-engraftment period is primarily due to defects in cell-mediated immunity that can persist for several months even in uncomplicated allogeneic HCT recipients, predisposing them to common bacterial and viral infections and to multiple opportunistic infections (eg, molds, viruses, atypical bacteria). In particular, the dominant pathogens during this early post-engraftment period can include herpes viruses (especially CMV), *Pneumocystis jirovecii*, and invasive molds such as *Aspergillus*. Prophylaxis against pneumococcal infection is advised in allogeneic HCT recipients (see Prophylaxis for Pneumococcal Infection).

Allografts from human leukocyte antigen (HLA)–matched unrelated donors, partially mismatched related donors, and cord blood are associated with a higher risk of GVHD. T-cell depletion delays immune reconstitution and, consequently, carries a greater risk of infectious complications, most notably by opportunistic viral and fungal pathogens. Cord blood transplant recipients may have a higher risk of infections than other allograft recipients during the early transplant period because of slower myeloid engraftment.
Guidelines from the Centers for Disease Control and Prevention (CDC) recommend that allogeneic HCT recipients with severe hypogammaglobulinemia (IgG <400 mg/dL) and with recurrent infections receive intravenous immunoglobulin (IVIG) prophylaxis; IVIG is not recommended in other patient groups or in autologous HCT recipients routinely. The 2009 guidelines on the prevention of infections in HCT recipients (jointly sponsored by the CDC, Infectious Diseases Society of America (IDSA), American Society for Blood and Marrow Transplantation, and European Society for Blood and Marrow Transplantation, among other organizations) reported similar recommendations on the use of IVIG.

Significant GVHD

Whereas mature and cooperative T- and B-cell functions are usually reconstituted by 1 to 2 years following engraftment, chronic GVHD is associated with persistently depressed cell-mediated and humoral immunity. Defective reconstitution of humoral immunity is a major factor contributing to increased infection susceptibility in the late post-engraftment transplant period. Winston et al\(^7^7\) noted a high frequency of pneumococcal infections between 7 and 36 months after transplantation, associated with serum opsonic deficiency for *Streptococcus pneumoniae*. Kulkarni et al\(^7^8\) reported that pneumococcal sepsis occurred a median of 10 months after transplant (range, 3–187 months) and was significantly more frequent in patients with chronic GVHD.

NCCN Recommendations for Categories of Infection Risk

The NCCN Guidelines provide a summary of infection risk categories (low, intermediate, and high risk) in patients with cancer, which are based on factors such as the underlying malignancy, disease status (eg, active disease or disease in remission), duration of neutropenia, prior exposure to chemotherapy, and intensity of IST. Development of the categories of risk was further based on the expert opinion of the panel. An overview of the antimicrobial recommendations based on risk for infection is presented below. For more details, refer to the Prevention of Infectious Diseases section in the discussion and Antimicrobial Prophylaxis in the algorithm.

Briefly, patients with solid tumors receiving standard chemotherapy regimens and who have an anticipated duration of neutropenia shorter than 7 days are generally considered at low risk for infectious complications; thus, antimicrobial prophylaxis is not routinely recommended in these patients.\(^2^3\) For patients with HSV-positive serology who are otherwise at low risk for infections, prophylaxis with antivirals can be considered.

Antimicrobial prophylaxis should be considered for patients with intermediate or high overall risk of infection. Patients with an anticipated duration of neutropenia of 7 days or longer are considered to be at greater risk of developing infectious complications.\(^2^3\) Patients with an anticipated duration of neutropenia of 7 to 10 days are considered to be at intermediate risk for infections. In addition, patients with lymphoma, multiple myeloma, CLL, autologous HCT recipients, or those receiving treatment with purine analog-containing regimens (most often for hematologic malignancies such as NHL or CLL) are also considered to be at intermediate risk. For the intermediate-risk patients, prophylaxis with antibacterials (eg, fluoroquinolones) should be considered. Antivirals should be given during periods of neutropenia, and for autologous HCT recipients, until at least 30 days following transplant (however, consider antiviral prophylaxis for varicella zoster virus [VZV] for at least 6–12 months after HCT). Antifungals should be considered during periods of neutropenia and for anticipated mucositis (with the latter pertaining to
autologous HCT) for intermediate-risk patients. PCP prophylaxis should be considered in patients with intermediate risk.

Patients with anticipated duration of neutropenia longer than 10 days, those undergoing intensive induction/consolidation therapy for acute leukemias (ie, acute lymphoblastic leukemia [ALL] or acute myeloid leukemia [AML]), patients undergoing treatment with alemtuzumab-containing regimens, allogeneic HCT recipients, and those with GVHD following allogeneic HCT are considered at high risk for infectious complications. Patients with NHL (in particular, for T-cell malignancy subtypes) or CLL treated with alemtuzumab-containing regimens are considered at high risk for infections. For these high-risk patients, prophylaxis with antibacterials (eg, fluoroquinolones) should be considered. These patients should receive antiviral prophylaxis during periods of neutropenia, and antiviral prophylaxis for VZV for at least 1 year after HCT. In addition, prophylaxis with antifungals (eg, fluconazole) should be considered. These patients should receive antiviral prophylaxis during periods of neutropenia, and antiviral prophylaxis for VZV for at least 1 year after HCT. In addition, prophylaxis with antifungals (eg, fluconazole) should be considered.

Prevention of Infectious Diseases

Preventive measures against infections in patients with cancer include upfront prophylaxis or preemptive therapy using broad-spectrum antimicrobial agents directed against the most common infecting pathogens (including bacterial, viral, and fungal) in high-risk patients. Vaccination and minimization of potential exposures to opportunistic pathogens which may be harmful to patients who are immunocompromised due to cancer are additional components of infectious diseases prevention.

Antibacterial Prophylaxis

During Neutropenia

Patients with cancer and chemotherapy-induced neutropenia are at risk for severe bacterial infections. Fluoroquinolones are the most commonly used prophylactic antibacterial agents in adults with chemotherapy-induced neutropenia. In a meta-analysis that evaluated 18 trials (N = 1408) in which fluoroquinolones were compared to either placebo or trimethoprim-sulfamethoxazole (TMP/SMX), fluoroquinolone prophylaxis significantly reduced the incidence of gram-negative infections by about 80% compared with trials without prophylaxis (relative risk [RR], 0.21; 95% CI, 0.12–0.37), leading to an overall reduction in total infections. The reduction in fever was small, and in blinded trials was not significant. Fluoroquinolone prophylaxis did not affect infection-related mortality rates in this meta-analysis. Moreover, the rate of gram-positive infections and fungal infections was not significantly affected by fluoroquinolone prophylaxis. This is an important consideration given the increased rate of gram-positive infections in some trials of fluoroquinolone prophylaxis.

In a single-center randomized study in patients undergoing high-dose therapy followed by autologous HCT (N = 157), patients were randomized to receive prophylaxis (with 500 mg oral ciprofloxacin twice daily and 1000 mg intravenous [IV] vancomycin once daily) or no prophylaxis; all patients received antifungal prophylaxis with fluconazole. Empiric therapy (comprising amikacin, ceftazidime and full-dose vancomycin) was initiated when neutropenic fever developed. The use of antibacterial prophylaxis significantly reduced the incidences
of neutropenic fever (56% vs. 91%; \(P < .001 \)) and bacteremia (6% vs. 35%; \(P = .005 \)) compared with no prophylaxis, but at the expense of decreased response to first-line empiric therapy (66% vs. 84%; \(P = .025 \)). Among the patients who received prophylaxis and developed neutropenic fever, 34% required second-line therapy that included a carbapenem, suggesting that these patients developed infections resistant to the prophylactic regimen. Duration of hospitalization and overall survival rates were similar between study arms. These results led the study investigators to conclude that routine antibacterial prophylaxis was not recommended in patients undergoing high-dose therapy and autologous HCT. It should be noted, however, that the prophylactic regimen in this study included vancomycin (albeit at a lower dose), which is not supported by the NCCN or IDSA panels for use as either antimicrobial prophylaxis or initial empiric therapy for fever and neutropenia.23

Gafter-Gvili et al84 conducted a meta-analysis of 95 randomized controlled trials comparing antibiotic prophylaxis with placebo, no intervention, or prevention with another antibiotic in afebrile neutropenic patients. Antibiotic prophylaxis significantly decreased the risk for all-cause death when compared with placebo or no treatment (RR, 0.67; 95% CI, 0.55–0.81); significant risk reductions were also observed for infection-related mortality, fever, clinically and microbiologically documented infections, gram-positive and gram-negative infections, and bacteremia. Similar results were obtained when the analysis was restricted to prophylaxis with fluoroquinolones. Fluoroquinolone prophylaxis significantly reduced the risk of all-cause mortality (RR, 0.52; 95% CI, 0.35–0.77), as well as for all secondary measures indicated above.84 Most of the trials involved hospitalized patients with hematologic malignancies, and data were inadequate to assess the relationship between duration and degree of neutropenia and relative risk of mortality. No significant increase was observed in fluoroquinolone-resistant bacterial infections, although the length of observation may have been too short to detect the emergence of resistant bacteria.84

A subsequent systematic review and meta-analysis conducted by the same group of investigators evaluated the risks associated with colonization and infections by fluoroquinolone-resistant bacteria.85 Most of the studies (48 of 56 trials) included patients with hematologic malignancies or HCT recipients. Results of the analysis (based on 56 trials, \(N = 7878 \) patients; data on colonization by resistant bacteria based on 27 trials) showed that quinolone prophylaxis was associated with an increase (although not statistically significant) in colonization with quinolone-resistant organisms compared with placebo or no intervention (RR, 1.68; 95% CI, 0.71–4.00). However, no difference was observed in the incidence of infections caused by quinolone-resistant organisms (RR, 1.04; 95% CI, 0.73–1.50), regardless of whether these were resistant gram-negative or gram-positive bacteria.85 Moreover, in an analysis of trials comparing quinolones with TMP/SMX (11 trials), prophylaxis with quinolones was associated with fewer incidents of colonization and infections by resistant bacteria (those resistant to the prophylactic agents) compared with the use of TMP/SMX.85 This analysis suggests that prophylaxis with quinolones does not appear to increase the rate of infections by resistant organisms.

In a systematic review and meta-analysis (based on 109 trials, \(N = 13,579 \) patients) comparing antibacterial prophylaxis with placebo, no intervention, or prevention with another agent in afebrile neutropenic patients, the use of antibacterial prophylaxis was found to significantly reduce the risk of all-cause mortality (risk ratio, 0.66; 95% CI, 0.55–0.79) as well as infection-related deaths (risk ratio, 0.61; 95% CI, 0.48–0.77) compared with placebo or no intervention.86 The use of
Infections, prophylaxis also significantly reduced the incidence of fever and clinically or microbiologically documented infections. Although no significant differences in all-cause or infection-related mortality were seen between prophylactic quinolones or TMP/SMX, the use of quinolones was associated with decreased drug resistance and fewer adverse events that subsequently reduced the incidence of drug discontinuation.86

Two large, randomized, placebo-controlled studies showed the benefit of levofloxacin prophylaxis in neutropenic patients at different levels of risk for infectious complications.87,88 Levofloxacin has similar activity against gram-negative pathogens compared to ciprofloxacin and ofloxacin; however, levofloxacin has improved activity against certain gram-positive pathogens, including streptococci. Bucaneve et al87 evaluated levofloxacin prophylaxis in adult patients with cancer in whom chemotherapy-induced neutropenia (less than 1000 neutrophils/mcL) was expected to occur for more than 7 days. This protocol intentionally excluded patients anticipated to have a short duration of neutropenia who would generally be candidates for outpatient management of neutropenic fever. Levofloxacin recipients had a lower rate of microbiologically documented infections, bacteremias, and single-agent gram-negative rod bacteremias than did placebo recipients.87 The effects of prophylaxis were also similar between patients with acute leukemia and those with solid tumors or lymphoma. Mortality and tolerability were similar between the 2 groups.87

Conversely, Cullen et al88 evaluated levofloxacin prophylaxis after chemotherapy for patients with solid tumors and lymphomas who were anticipated to have brief durations of neutropenia. The primary outcome was the incidence of clinically documented febrile episodes (temperature more than 38°C) attributed to infection. Secondary outcomes included the incidence of all probable infections, severe infections, and hospitalization. A total of 1565 patients, 87% with solid tumors and 13% with lymphoma, were randomized to receive either levofloxacin or the placebo. During the entire chemotherapy course, 10.8% of levofloxacin recipients had at least one febrile episode compared with 15.2% of placebo recipients (P = .01).88 Hospitalization was required for the treatment of infection (suspected and documented) in 15.7% of patients in the levofloxacin group and in 21.6% of patients in the placebo group (P = .004). The incidence of severe infections, infection-related mortality, and overall mortality were similar between both groups.88

The main advantage of levofloxacin prophylaxis in intermediate and higher risk patients with chemotherapy-induced neutropenia was a reduction in clinically significant bacterial infections, including gram-negative rod bacteremia.87 In contrast, the main advantage of prophylaxis in lower risk neutropenic patients was a small, but statistically significant, reduction in fever and hospitalization for neutropenic fever.88 Neither study conducted a systematic long-term evaluation of antimicrobial resistance. The NCCN Guidelines Panel considers that reduction in the incidence of significant infections is a more clinically meaningful endpoint than reduction in the incidence of neutropenic fever. Using prevention of neutropenic fever as the primary endpoint in this study by Cullen et al,88 1000 hypothetical low-risk patients would have to receive prophylaxis during each cycle of chemotherapy-induced neutropenia to benefit only 44 patients.

An important consideration for low-risk patients with short durations of neutropenia is whether fluoroquinolone prophylaxis is of greater benefit than outpatient fluoroquinolone treatment for fever and neutropenia, should it occur. Both the NCCN Guidelines and IDSA23 panels recommend oral fluoroquinolone-based regimens as outpatient empiric therapy for neutropenic fever in adults who meet criteria for a low risk of...
complications. Fluoroquinolone prophylaxis may preclude its subsequent use as empiric therapy for neutropenic fever in the same patient. The modest difference in rates of hospitalization for suspected infection in levofloxacin compared to placebo recipients (15.7% vs. 21.6%, respectively) may be offset by exclusion of outpatient oral empiric therapy in patients receiving fluoroquinolone prophylaxis. To limit antibacterial use, Cullen et al have suggested prophylaxis with levofloxacin on cycle 1 of myelosuppressive cancer chemotherapy and only in subsequent cycles if a febrile episode occurs.

The NCCN panel recommends oral fluoroquinolone-based regimens as outpatient empiric therapy for neutropenic fever in adults who have a low risk of complications as a single agent or in combination with a daily long-acting IV agent. Intravenous antibiotics may also be used as a single-agent therapy (see Outpatient Therapy for Low-Risk Patients in the algorithm). The decision whether to use antibacterial prophylaxis and the selection of the specific agent requires a balance between expected benefit and risk. The concept of risk applies to immediate adverse effects of the drug (eg, rash, GI intolerance), the potential for selection for resistant pathogens that can harm the individual receiving prophylaxis, and the risk of resistant organisms to a specific population of patients (eg, those being treated at a cancer center). The link between fluoroquinolone use and severe Clostridium difficile as well as MRSA infections provides an additional cautionary note regarding excess use of fluoroquinolones.

NCCN Recommendations for Antibacterial Prophylaxis

Antibacterial prophylaxis is not recommended for patients with a low risk of overall infection. In patients with neutropenia who are at lower risk of infectious complications (a category that includes most patients with solid tumor malignancies), the main benefit of antibacterial prophylaxis is a reduction in fever rather than in documented infections. In patients with neutropenia expected to last less than 7 days who are not receiving immunosuppressive regimens (eg, systemic corticosteroids), the panel suggests no antibiotic prophylaxis. In patients deemed at intermediate or high risk, the NCCN Guidelines Panel advises that fluoroquinolone prophylaxis (levofloxacin is preferred) be considered in patients with an expected duration of neutropenia (absolute neutrophil count [ANC] <1000 neutrophils/mcL) for more than 7 days. This is in agreement with the recommendations of the recent IDSA guidelines for the use of antimicrobial agents in neutropenic patients with cancer.

Prophylaxis for Pneumococcal Infection

Prophylaxis against pneumococcal infection is advised in allogeneic HCT recipients. Patients undergoing allogeneic HCT are at an increased risk for pneumococcal sepsis due to functional asplenia and impaired B-cell immunity. Pneumococcal sepsis is most common in the late transplant period, between 3 months to years after HCT. IST for GVHD delays reconstitution of B-cell immunity and significantly increases the risk of post-transplant pneumococcal sepsis.

The NCCN Guidelines Panel advises that penicillin prophylaxis be initiated at 3 months after HCT and be continued until at least 1 year following transplant. Patients should receive prophylaxis regardless of prior administration of pneumococcal vaccines. Prophylaxis should be continued in patients with chronic GVHD until IST has been discontinued. Post-transplant pneumococcal infection is generally community-acquired, and the frequency of resistance to antibiotics reflects regional susceptibility patterns. In some regions as many as 35% of pneumococcal isolates have intermediate- or high-level resistance to penicillin, and cross-resistance to other classes of antibiotics is common. Breakthrough pneumococcal sepsis in HCT recipients receiving penicillin prophylaxis is well described. Thus, in areas with a significantly higher frequency of penicillin-resistant
pneumococcal isolates, alternative agents should be considered based on local susceptibility patterns. Daily TMP/SMX used as prophylaxis for PCP is likely to be protective against pneumococcal disease. In high-risk patients (eg, allogeneic HCT recipients with GVHD), prophylaxis with penicillin and TMP/SMX should be considered. Vaccination with the polysaccharide pneumococcal vaccine is also strongly recommended (see Vaccination) 6 to 12 months after cessation of immunosuppression in HCT patients with revaccination after 5 years.96,99

Antifungal Prophylaxis

Antifungal prophylaxis should not be used routinely in all patients with neutropenia. The rationale for antifungal prophylaxis is to prevent fungal infections in a targeted group of high-risk patients, especially those with longer durations of neutropenia or with GVHD after allogeneic HCT.23 Selection of an antifungal agent is determined by the disease or therapy and includes azoles, amphotericin B products, and echinocandins.

Azoles

Azoles are among the most commonly used medications for the prevention and treatment of fungal infections. Early generation azoles such as ketoconazole and itraconazole are used less commonly now because of toxicity, drug interactions, and limited spectrum of activity. The “first generation” triazoles (i.e. fluconazole) are used widely due to their low cost and minimal toxicity but are limited by increasing resistance among Candida species and lack of activity against most molds. Several “second generation” triazoles have been developed in recent years. These drugs extend the spectrum of activity of triazoles to include potent activity against many molds (importantly, activity differs within the class) but can also have complicated drug interactions and distinct toxicities and remain extremely costly with extended use.

Fluconazole prophylaxis has been shown to effectively decrease fungal colonization, invasive infection, and fungal infection-related mortality in nontransplant patients with leukemia and in autologous HCT recipients in a placebo-controlled trial.100 The benefit of fluconazole prophylaxis was greatest in autologous HCT recipients not receiving colony-stimulating growth factor support and in patients with leukemia receiving mucotoxic regimens consisting of cytarabine plus anthracycline.100 In neutropenic allogeneic HCT recipients, prophylactic fluconazole controlled yeast colonization and also decreased the rate of mucosal candidiasis and invasive Candida infections.101,102 A decrease in mortality was noted in one study in which most of the patients were allograft recipients.102 Fluconazole conferred significant long-term improvement in survival, possibly by decreasing Candida antigen-induced GI tract GVHD.103 Other studies of nontransplant patients with acute leukemia showed no significant benefit of fluconazole in preventing invasive fungal infections, reducing mortality, or reducing the requirement for amphotericin B.104,105

Prophylaxis with voriconazole was compared with fluconazole in a large, randomized, double-blind study that included serum galactomannan surveillance in allogeneic HCT recipients (N = 600).106 Patients were randomized to receive study drugs for 100 days or for 180 days in the higher-risk cohort of patients. No difference was noted in the primary endpoint (invasive fungal infection-free survival rate at 180 days) between the fluconazole and voriconazole prophylaxis arms (75% vs. 78%, respectively), but a trend for reduced incidence of Aspergillus infections (17% vs. 9%), reduced incidence of invasive fungal infections (11% vs. 7%), and less frequent use of empiric antifungal treatment (30% vs. 24%) was noted in the voriconazole arm, although the differences were not statistically significant. No differences
in relapse-free and overall survival rates, nor incidence of severe adverse events were seen between treatment arms.106

Posaconazole is equally effective compared to fluconazole as primary therapy for oropharyngeal candidiasis107 but has not been evaluated as primary therapy for invasive fungal infections. In a multicenter randomized trial, prophylaxis with posaconazole in neutropenic patients with AML or MDS receiving induction or re-induction chemotherapy, significantly reduced the rate of invasive fungal infections during the treatment period (2\% vs. 8\%; \(P < .001\)) and during the 100 days following randomization (5\% vs. 11\%; \(P = .003\)), reduced the incidence of invasive aspergillosis (1\% vs. 7\%; \(P < .001\)), and was associated with a significant survival benefit (\(P = .04\)) compared with the fluconazole/itraconazole arm.108 Data from a prospective, randomized study showed that posaconazole was effective as prophylaxis in allogeneic HCT recipients with severe GVHD and reported reduced incidence of invasive aspergillosis and overall invasive fungal infections compared to patients receiving fluconazole.109

Isavuconazole was approved in March 2015 for the treatment of invasive aspergillosis and invasive mucormycosis.110 It should be noted that isavuconazole is dosed as the prodrug isavuconazonium to achieve improved delivery of this agent. A phase III, randomized trial comparing isavuconazole to voriconazole for the primary treatment of invasive aspergillosis and other filamentous fungi showed the non-inferiority of isavuconazole compared with voriconazole (19\% vs. 20\%; adjusted difference -1.0\%; 95\% CI, -7.8–5.7\%).111 Treatment-emergent adverse events were similar between isavuconazole and voriconazole (96\% vs. 98\%; \(P = .122\)) with GI disorders and infections or infestations as the most common. Isavuconazole demonstrated a lower incidence of hepatobiliary disorders, eye disorders, and skin or subcutaneous tissue disorders. Drug-related adverse events were also lower for isavuconazole compared to voriconazole (42\% vs. 60\%; \(P < .001\)). Data are emerging for the clinical activity of isavuconazole regarding invasive aspergillosis and mucormycosis.

Toxicities and Drug-drug Interactions

Experience to date suggests that fluconazole and posaconazole are generally well-tolerated and serious adverse events, primarily liver toxicity, are rare. Toxicities for voriconazole include neurologic and ophthalmic adverse events that may be associated with renal toxicity due to the accumulation of the solvent vehicle sulphobutylether beta cyclodextrin sodium contained within the IV formulation. There are emerging data to suggest that the longer-term use of voriconazole may be associated with severe photosensitivity and other adverse events including cutaneous malignancies, elevated serum fluoride levels and periostitis. Itraconazole may be associated with hepatic toxicity and GI intolerance112 and is contraindicated in patients with a decreased cardiac ejection fraction or a history of congestive heart failure based on its negative inotropic properties. It can also increase cyclophosphamide metabolites, which in turn are associated with hyperbilirubinemia and nephrotoxicity during the early transplant period.113 Fluconazole, itraconazole, posaconazole and voriconazole may cause QTc prolongation. Conversely, isavuconazole has been associated with dose-dependent QTc shortening in healthy individuals.110 In a clinical trial treating patients with invasive mold infections with isavuconazole, 7.5\% (17 out of 257) of patients showed QTc shortening.114

Azole-associated drug-drug interactions are common clinical occurrences. Both the addition and withdrawal of azoles can result in either increased uptake of these other drugs or sub-therapeutic exposure and potential transplant rejection or GVHD. Several studies demonstrate the interaction of azoles with hepatic enzymatic pathways. Administration of itraconazole with medications that are metabolized by
the 3A4 isoenzyme can increase plasma concentrations causing QTc prolongation and ventricular tachyarrhythmias.115,116 These findings reinforce a note of caution about itraconazole (and by extension, fluconazole, voriconazole, and posaconazole), with regard to potential serious drug-drug interactions through inhibition of the cytochrome P450 3A4 isoenzyme. Additionally, fluconazole and voriconazole have demonstrated inhibition of CYP2C9 and CYP2C19 enzymes and high interpatient variability of genetic CYP2C19 polymorphisms that may also affect dosing.

The potential for QTc prolongation is a concern exacerbated by the combination of azoles and other drugs (eg. fluoroquinolones, macrolides, ondansetron) and with some chemotherapies (eg. nilotinib for CML, panobinostat for myeloma). Itraconazole and posaconazole are also known inhibitors of gastric P-glycoprotein which can increase systemic levels of drugs that are affected by this transport system. The list of drug-drug interactions is expansive and continues to grow. While azoles may be necessary for antifungal therapy, they should only be incorporated into treatment following consultation with an infectious diseases expert.

Therapeutic Drug Monitoring of Azoles
Therapeutic drug monitoring (TDM) for the pharmacokinetic evaluation of antifungal agents, provides guidance for achieving adequate plasma drug concentration while reducing toxicity. This is an area of active research, though clinical use is limited by the need for optimization of methods and training of personnel regarding interpretation of results. As a result, these tests generally require sending samples to a reference laboratory thereby increasing turn-around-time for results. The support of an infectious diseases consultant is recommended to address the multiple variables that may affect TDM.

TDM should be considered for patients receiving triazoles; there is no current evidence to support the use of TDM for the evaluation of polyenes or echinocandins. Fluconazole and isavuconazole are the two triazoles that do not require TDM. Fluconazole has linear pharmacokinetics that eliminate the need for TDM,117-121 though patients in renal failure should receive a modified dose.122 Studies intended to define a therapeutic range for isavuconazole have not been performed; thus, TDM is not currently recommended for isavuconazole. TDM should be considered for posaconazole, itraconazole, and voriconazole. Variability of therapeutic drug levels may be affected by the route of drug administration, timing of monitoring, location of the infection, and intrinsic patient factors (ie, age, weight).

There are three formulations of posaconazole: oral suspension, delayed-release tablet, and intravenous (IV) solution. Pharmacokinetic studies with the oral suspension of posaconazole in healthy individuals showed that administration with or after a high-fat meal, or with any meal or nutritional supplement, greatly enhanced its absorption up to 400\%.123,124 The plasma concentration of posaconazole can be reduced by proton pump inhibitors (PPIs) due to the increase in gastric pH when given orally.123 Subtherapeutic concentrations and breakthrough fungal infections have been reported.125,126 As reviewed by Brüggemann et al,127 a substantial list of drug interactions with azole antifungal drugs can result in subtherapeutic effects or toxicity. The recent approval of the tablet formulation of posaconazole has improved absorption and demonstrates a more predictable bioavailability.124 Gastric pH does not affect plasma concentration of extended-release posaconazole,128 nor does it have the same interaction with PPIs or metoclopramide.129 The IV formulation has also demonstrated similar pharmacokinetics and safety compared with the extended-release tablet.130 A target concentration of posaconazole for prophylactic TDM of greater than 0.7
mcg/mL is supported by individual studies126,131,132 as well as two phase III studies;108,109 however, doses as low as 0.5 mcg/mL have also been reported as effective.126,132-136 TDM may not be necessary when using either the extended release tablet or IV formulation in the prophylactic setting as data indicate that a dose of 300 mg/d results in at least 0.5 ug/ml in greater than 95% of patients. Treatment of an established infection is recommended to have a trough concentration greater than 1 mcg/mL with potentially higher doses based on the pathogen resistance.137,138

Studies of itraconazole demonstrate a significant rate of breakthrough infections when plasma drug concentrations are below 1 mcg/mL;139,140 however, increased mortality was observed at plasma drug concentrations greater than 0.5 mcg/mL.141,142 Targeting a lower itraconazole plasma concentration for prophylaxis and a higher dose if an active infection is being treated may be beneficial. Studies suggest that trough concentrations of itraconazole between 1 and 2 mcg/mL have shown the best therapeutic responses for invasive infections,143-146 while a trough concentration of greater than 0.5 mcg/mL may be sufficient for prophylaxis. Currently, an upper limit of 17 mcg/mL measured by bioassay has been suggested,147 but studies for the upper limit have not been extensive. Itraconazole should be given either 1 hour before or 1 hour after meals based on the 43% increase in bioavailability in patients who fasted.148

Target voriconazole trough values between 0.5 and 2 mcg/mL have been proposed in clinical studies.149-156 While 0.5 mcg/mL is a suggested target for prophylaxis, a higher range of 1 to 2 mcg/mL may be necessary for active disease and for patients with disease that has a poor prognosis. Higher concentrations may also benefit immunocompromised patients by reducing breakthrough infection.157,158 Trough concentrations greater than or equal to 4 mcg/mL have correlated with toxicity in various studies.149,153,156,159-163 Voriconazole bioavailability was lowered by about 22\% when taken with food and by 34\% when given with a high-fat meal.164,165 Therefore, voriconazole should be given either 1 hour before or 1 hour after meals.

Studies have shown a general consensus regarding a minimal level of plasma concentration necessary for the triazoles, though the lack of prospective studies has limited the adoption of formal monitoring standards. The British Society for Medical Mycology has published its guidelines for the use of TDM of antifungal agents based on available literature.166 These guidelines provide similar recommendations as those proposed in an earlier review by Andes et al.167 Consideration of TDM is recommended by the NCCN panel in conjunction with involvement of an infectious diseases expert.

Amphotericin B Formulations

Amphotericin B formulations are broad spectrum antifungal agents that have activity through disruption of the fungal cell wall synthesis and subsequent development of pores in the membrane leading to cell death. The original formulation, amphotericin B deoxycholate, was associated with dose-limiting toxicities including infusion-related reactions and nephrotoxicity. Three lipid-associated formulations, amphotericin B lipid complex (ABLC), liposomal amphotericin B (L-AmB), and amphotericin B colloidal dispersion (ABCD), have since been developed to have reduced toxicity.

Low-dose amphotericin B formulations have been studied in high-risk patients and have been shown to provide protection against invasive molds, although no survival benefit in randomized studies was seen when compared with fluconazole.112,168,169 Based on the toxicity of amphotericin B products and the availability of safer and equally effective alternative agents, amphotericin B products are considered a
category 2B recommendation for prophylaxis. If an amphotericin B product is used, a lipid formulation is generally preferred because of less infusional and renal toxicity compared to conventional amphotericin B. Use of the lipid formulation is particularly important for patients at high risk for renal failure, such as patients with pre-existing renal disease, HCT recipients, and patients who are concurrently receiving other nephrotoxic agents.170,171

Aerosolized delivery of amphotericin B products has been considered for several years with the advantage of local delivery to the lungs while simultaneously avoiding systemic toxicity. A recent randomized, placebo-controlled trial found that aerosolized liposomal amphotericin B was useful for preventing invasive pulmonary aspergillosis in patients with prolonged neutropenia.172 Limitations to the use of aerosolized amphotericin B for prophylaxis relate to the variability of this treatment due to different nebulizers and amphotericin B formulations, the lack of dosing optimization, and a dearth of direct comparative data with systemically administered mold-active azoles or echinocandins.173

Echinocandins

Echinocandins are a class of antifungal agents that disrupt the integrity of the fungal cell wall through noncompetitive inhibition of β-(1,3)-β-glucan synthase, a component specific to the cell wall of many fungi. Echinocandins have fungicidal activity against *Candida* species and are fungistatic towards *Aspergillus* species. Combination therapy with amphotericin B or triazoles has been proposed to improve activity against molds; however clinical evidence for this remains quite limited. Advantages of this family of antifungals are the relatively low toxicity profiles and limited drug-drug interactions. Though echinocandins demonstrate activity against *Candida* species that are resistant to other antifungal agents,174 there is limited or no activity against dimorphic fungi. Three echinocandins are approved for use: caspofungin, micafungin, and anidulafungin. All three agents are approved for the treatment of esophageal candidiasis. Caspofungin and anidulafungin have additional indications for the treatment of candidemia and other infections caused by *Candida* species. Caspofungin is indicated for treatment of candidal pleural space infections, empiric treatment of fungal infections in neutropenic patients and treatment of invasive aspergillosis in patients who are refractory to or intolerant of other antifungal agents. Micafungin has the additional indication for prophylaxis of candidal infections in patients receiving HCT.

Caspofungin was evaluated in a double-blind study including 128 patients with esophageal candidiasis.175 Patients received either caspofungin or amphotericin B deoxycholate. Two doses of caspofungin were evaluated (50 mg or 70 mg IV once daily) with a greater response in the patients given the higher dose (96% vs. 85%). Both groups treated with caspofungin had a better response than patients receiving amphotericin B (78%). At the two-week follow-up, a greater percentage of patients remained negative for candidiasis with the caspofungin treatment (89% in the 70 mg group, 74% in the 50 mg group, and 63% in the amphotericin B group). Furthermore drug-related adverse events were lower with caspofungin (7%, 4%, and 24%, respectively). Several studies have evaluated the role of caspofungin in the treatment of invasive aspergillosis in patients refractory to or intolerant of other antifungals, supporting its recommendation in this capacity.176,177

Micafungin is an echinocandin approved for prophylaxis against *Candida* infections in patients undergoing HCT.178 In a randomized, double-blind trial of autologous and allogeneic HCT recipients, the success rate with micafungin was superior to fluconazole (80% vs. 73.5%; absolute difference +6.5%; 95% CI, 0.9–12%; \(P = .03 \)) based on pre-specified criteria for treatment success (absence of suspected, proven, or probable invasive fungal infections during treatment period...
and absence of proven or probable infection during the 4-week period after treatment). The duration of this study encompassed the neutropenic period, but not the period after neutrophil recovery when GVHD would be expected to occur. The frequency of breakthrough candidemia was similar in both arms, but there was a trend to fewer episodes of invasive aspergillosis in allogeneic HCT recipients receiving micafungin. Survival and drug-related toxicity were similar between treatment arms. Micafungin has shown activity in the treatment of aspergillosis in patients refractory to or intolerant of other antifungal agents.

Anidulafungin has been shown to be an effective antifungal agent against Candida infection in several studies. A randomized double-blind study in 601 patients with esophageal candidiasis demonstrated noninferiority of IV anidulafungin to oral fluconazole (97.2% vs. 98.8%, respectively) and lower adverse effects (9.3% vs. 12.0%) and recurring infections at the 2-week follow-up (64.4% vs. 89.5%). In a smaller study of 19 patients with triazole-refractory mucosal candidiasis, anidulafungin treatment resolved infection in 18 of the patients. A larger phase III trial similarly showed superiority of anidulafungin compared to fluconazole in the treatment of candidemia and invasive candidiasis (75.6% vs. 60.2%).

The NCCN Guidelines Panel recommends posaconazole (category 1) for antifungal prophylaxis in neutropenic patients with AML and MDS receiving induction or re-induction chemotherapy (see Overall Infection Risk in Patients with Cancer in the algorithm). The role of antifungal prophylaxis in patients with acute leukemia receiving consolidation chemotherapy has not been adequately evaluated. Voriconazole, fluconazole, micafungin, or amphotericin B products are all category 2B recommendations in this disease setting. Antifungal prophylaxis should be continued until resolution of neutropenia.

In patients receiving autologous HCT with mucositis, antifungal prophylaxis with fluconazole or micafungin (both category 1) is recommended until resolution of neutropenia. No prophylaxis is recommended in autologous HCT recipients without mucositis.

The NCCN Guidelines Panel recognizes that strong evidence exists for the use of fluconazole or micafungin as prophylaxis in neutropenic allogeneic HCT recipients (category 1) (see Overall Infection Risk in Patients with Cancer in the algorithm). However, it should be noted that fluconazole use can predispose patients to colonization and bloodstream infection by fluconazole-resistant Candida strains. Posaconazole as prophylaxis has not been evaluated during the neutropenic period following conditioning in allogeneic HCT recipients, and thus the safety of this approach is unknown. Drug-drug interactions during conditioning for HCT, specifically with posaconazole or voriconazole, complicate treatment of fungal infections in these patients.
Prophylaxis may need to be tailored following consultation with an infectious diseases expert. Posaconazole, voriconazole, and amphotericin B products are all considered category 2B recommendations. Antifungal prophylaxis should be considered until at least day 75 after allogeneic HCT (see Overall Infection Risk in Patients with Cancer in the algorithm). Although many centers reasonably use antifungal prophylaxis in non-neutropenic allogeneic HCT recipients with GVHD, this practice was only evaluated in a single, properly designed study. In the prospective, randomized, double-blind study, posaconazole was compared with fluconazole as prophylaxis in allogeneic HCT recipients with severe GVHD requiring intensive IST. Inclusion criteria included grade II to IV GVHD, chronic extensive GVHD, or intensive IST consisting of either high-dose corticosteroids, antithymocyte globulin, or a combination of 2 or more immunosuppressive agents or types of treatment were inclusion criteria. Prophylaxis with posaconazole resulted in reduced incidences of invasive aspergillosis, total invasive fungal infections while on treatment, and deaths attributed to fungal infection. Posaconazole is recommended (category 1) as prophylaxis in patients with GVHD receiving intensive IST, as defined by the inclusion criteria in this trial. Prophylactic posaconazole can be considered in all patients with GVHD receiving IST (category 1), although the benefit/risk ratio of mold-active prophylaxis in patients receiving less intensive IST has not been established. Voriconazole, echinocandins, and amphotericin B products are all category 2B recommendations.

Patients with chronic severe neutropenia (ANC <500 neutrophils/mcL) due to the underlying disease (such as aplastic anemia) are at substantial risk for invasive aspergillosis. Although this population has not been evaluated in clinical trials of antifungal prophylaxis, some panel members advise the use of a prophylactic mold-active agent (eg, posaconazole or voriconazole).

Secondary antifungal prophylaxis is defined as administration of antifungal therapy in a patient with a prior fungal infection to prevent recrudescence. The panel recommends secondary prophylaxis with an appropriate antifungal agent in patients with prior chronic disseminated candidiasis or with invasive filamentous fungal infection during subsequent cycles of chemotherapy or HCT. In patients with invasive aspergillosis before HCT, antifungal therapy for more than a month and resolution of radiologic abnormalities correlate with a lower likelihood of post-transplant recurrence of infection. Secondary prophylaxis with a mold-active agent is advised for the entire period of immunosuppression.

Prophylaxis for Pneumocystis jirovecii

TMP/SMX prophylaxis for *Pneumocystis jirovecii* is highly effective in preventing PCP. In a systematic review and meta-analysis of 12 randomized studies (N = 1245; primarily in patients with acute leukemias or in HCT recipients), prophylaxis with TMP/SMX resulted in a significant reduction in PCP occurrence by 91% compared with placebo, no treatment, or treatment with non-PCP antibiotics (RR, 0.09; 95% CI, 0.02–0.32). In addition, TMP/SMX prophylaxis significantly reduced PCP-related mortality (RR, 0.17; 95% CI, 0.03–0.94). TMP/SMX has the potential advantage of activity against other infectious complications (such as common bacterial infections, listeriosis, nocardiosis, and toxoplasmosis) that may afflict patients with severe T-cell depletion or impairment. TMP/SMX desensitization is considered the treatment of choice for PCP prophylaxis (preferred, category 1; see Antipneumocystis Prophylaxis in the algorithm). In cases of intolerance, TMP/SMX desensitization should be considered. Daily dapsone and...
aerosolized pentamidine are alternatives to TMP/SMX. Although early data suggested that these agents may be inferior when used prophylactically in allogeneic HCT recipients, more recent studies have suggested that these agents are a safe and effective alternative. For patients receiving dapsone, clinicians should consider assessing G6PD levels. Patients who are G6PD deficient may have an increased risk for hemolytic adverse reactions. Atovaquone appears to be equivalent to dapsone in HIV patients who cannot tolerate TMP/SMX. In pediatric patients with acute leukemias who were intolerant of TMP/SMX, atovaquone was reported to be an effective strategy for PCP prophylaxis.

Prophylaxis against PCP should be used in allogeneic HCT recipients (category 1) for at least 6 months and while receiving IST; patients receiving treatment with alemtuzumab for a minimum of 2 months after alemtuzumab and until the CD4 count is greater than 200 cells/mcL; and patients with ALL (category 1) throughout anti-leukemic therapy (see Antipneumocystis Prophylaxis in the algorithm). Panel members advise prophylaxis against PCP for the following patients (category 2B): 1) patients receiving purine analog therapy (eg, fludarabine, cladribine [2-CdA]), and other T-cell–depleting agents until CD4 count is greater than 200 cells/mcL; 2) autologous HCT recipients 3 to 6 months post-transplant; 3) patients with neoplastic diseases receiving intensive corticosteroid treatment (eg, the equivalent of 20 mg or more of prednisone daily for 4 weeks or more); and patients receiving concomitant temozolomide and radiotherapy until recovery from lymphocytopenia.

Antiviral Prophylaxis and Preemptive Antiviral Therapy

Herpes Simplex Virus

HSV is an important pathogen in patients who develop neutropenia and mucositis. HSV infections primarily result from reactivation of latent virus. The presence of latent HSV can be determined by pretreatment HSV serology. Reactivation and infection with HSV occur in 60% to 80% of HCT recipients and patients (without prophylaxis) with acute leukemia undergoing induction or re-induction therapy who are seropositive for HSV. Among allogeneic HCT recipients, HSV disease is most likely to occur within the first month post-transplant, but may occur in later stages during intense immunosuppression. Although disseminated HSV infection is uncommon, infection from viral reactivation is frequently associated with increased mucosal damage, resulting in increased pain, limited ability to maintain oral hydration and nutrition, and an increased risk of bacterial and fungal superinfections.

NCCN Recommendations for HSV Prophylaxis

Antiviral prophylaxis against HSV is advised during the period of neutropenia in HSV-seropositive patients who are receiving chemotherapy (induction or consolidation) for acute leukemia, and during neutropenia and possibly longer in allogeneic and autologous HCT recipients depending on the degree of immunosuppression (see Overall Infection Risk in Patients with Cancer in the algorithm). A longer period of prophylaxis should be considered in allogeneic HCT recipients with GVHD or with frequent HSV reactivations before transplantation. Acyclovir, famciclovir, or valacyclovir are the initial agents of choice for HSV prophylaxis. Foscarnet is typically reserved for patients with acyclovir-resistant HSV infection. In patients receiving antiviral prophylaxis with ganciclovir or foscarnet for prevention of CMV reactivation, additional prophylaxis with acyclovir is not necessary given that these agents are active against HSV.

HSV and herpes zoster infections are common in patients with CLL treated with the CD52 monoclonal antibody alemtuzumab. For these patients, antiviral prophylaxis is advised until at least 2 months after
completion of alemtuzumab therapy and until CD4+ cell counts are 200 cells/mcL or more.38,215

Prophylaxis against HSV should be considered in other patients at intermediate risk for HSV reactivation, including those with hematologic malignancies with prolonged neutropenia or those receiving high-dose corticosteroids or T-cell depleting agents (eg, fludarabine). Once a patient has had HSV reactivation requiring treatment, the panel recommends HSV prophylaxis for that patient during all future episodes of neutropenia induced by cytotoxic therapy.

\textbf{Varicella Zoster Virus}

Impaired cellular immunity is the principal risk factor for VZV disease. In allogeneic HCT recipients with a history of VZV infection, about 30% have reactivation of VZV disease without antiviral prophylaxis.216 In patients with a history of chicken pox, oral acyclovir administered from 1 to 2 months until 1 year after allogeneic HCT significantly decreased the incidence of VZV disease compared to placebo (5\% vs. 26\%, respectively).216 The frequency of VZV disease in the post-prophylactic period was similar between the groups and predominantly occurred in patients who required systemic immunosuppression. This prolonged course of acyclovir prophylaxis is likely to also prevent HSV reactivations. Subsequent studies have consistently demonstrated the benefit of long-term antiviral prophylaxis against VZV disease in recipients of allogeneic HCT. Patients who received anti-VZV prophylaxis with acyclovir or valacyclovir for 1 year post-HCT had significantly reduced VZV disease compared with those who did not receive long-term prophylaxis (9\% vs. 25\%; \textit{P} < .001); no evidence of rebound VZV disease was observed.217 Long-term (1 year post-allogeneic HCT) prophylaxis with lower doses of acyclovir or valacyclovir was associated with a 19\% to 35\% cumulative incidence of VZV reactivation, but successfully prevented the occurrence of severe VZV disease comprising visceral involvement or serious complications.218,219

\textbf{NCCN Recommendations for VZV Prophylaxis}

The NCCN Guidelines Panel recommends prophylaxis against VZV for at least 1 year after allogeneic HCT in patients seropositive for VZV pretransplant (see \textit{Overall Infection Risk in Patients with Cancer} in the algorithm), and recommends considering the extension of prophylaxis in patients who continue to receive systemic IST. Although higher doses are necessary, the same agents used as HSV prophylaxis are also active against VZV.

Among autologous HCT recipients, HSV reactivation is more likely to occur in the early neutropenic phase, whereas the risk of VZV reactivation extends through the first year.220 Thus, VZV prophylaxis for at least 6 to 12 months post-transplant should be considered in autologous HCT recipients. Prophylaxis against VZV should be considered in other patients at intermediate risk for viral reactivation, including patients with hematologic malignancies with prolonged neutropenia or those receiving T-cell depleting agents (eg, fludarabine, alemtuzumab). Bortezomib is associated with an increased risk of VZV reactivation during active therapy221-224; carfilzomib may also be associated with VZV reactivation.225 Prophylaxis with acyclovir, valacyclovir, or famciclovir should be protective and can be considered in these settings.225-227 As previously discussed, among patients with CLL receiving alemtuzumab treatment, antiviral prophylaxis is recommended until 2 months after completion of treatment and until the CD4+ cell counts reach 200 cells/mcL or more (see \textit{Overall Infection Risk in Patients with Cancer} in the algorithm).38,215
Cytomegalovirus

CMV infections most frequently occur in patients with cancer who undergo allogeneic HCT or who receive alemtuzumab therapy. CMV is a common cause of opportunistic infections during the early post-engraftment phase following allogeneic HCT, but can also occur in the late post-engraftment phase (particularly for patients with GVHD during the latter phase). Infection can result from viral reactivation (in immunocompromised CMV-seropositive patients) or primary infection (in CMV-seronegative patients). The risk for CMV reactivation and disease is highest among HCT recipients with CMV-seropositive status prior to transplant. Among CMV-seropositive patients undergoing allogeneic HCT (with graft sources from peripheral blood, bone marrow, or umbilical cord blood), the incidence of CMV reactivation ranged from 50% to 60% (with CMV disease in about 10%–30% of seropositive recipients) even with routine surveillance and antiviral prophylaxis or preemptive therapy.

In two randomized studies, prophylaxis with acyclovir was associated with increased survival in allogeneic HCT recipients, but the rates of CMV reactivation and disease were fairly high. Oral valacyclovir (a valine esterified analogue of acyclovir with high oral bioavailability) was compared with acyclovir as prophylaxis in allogeneic HCT recipients in whom either the donor or recipient was CMV seropositive. All patients received initial IV acyclovir until day 28 after transplantation or until discharge, and then either oral valacyclovir or acyclovir until week 18. Valacyclovir was more effective than acyclovir in preventing CMV infection (28% vs. 40%; hazard ratio [HR], 0.59; 95% CI, 0.46–0.76; \(P < 0.0001 \)); no differences were observed in CMV disease, adverse events, or overall survival. In another study, acyclovir and valacyclovir were demonstrated to be acceptable agents for CMV prophylaxis, but surveillance and preemptive therapy with ganciclovir or foscartern was still necessary. The poor sensitivity of CMV to acyclovir is likely due to the lack of a CMV encoded thymidine kinase and lower activity of acyclovir against the CMV DNA polymerase. Routine use of acyclovir or valacyclovir for primary prophylaxis of CMV infection is not recommended.

Valganciclovir and ganciclovir are the agents of choice for first-line preemptive therapy; foscartern is more commonly used for patients who cannot tolerate ganciclovir or for second-line preemptive therapy. Foscarnet and ganciclovir had similar efficacy as preemptive CMV therapies in allogeneic HCT recipients, but ganciclovir was associated with a higher rate of early discontinuation because of neutropenia or thrombocytopenia. Although ganciclovir had a higher rate of early discontinuation, there remains a paucity of data to recommend foscarnet as first-line treatment for CMV. Additionally, breakthrough CMV infection and disease with foscarnet have been reported.

Pharmacokinetic studies have demonstrated the feasibility and safety of using oral valganciclovir, a pro-drug of ganciclovir, in place of ganciclovir in patients who underwent allogeneic HCT. Oral valganciclovir used as preemptive anti-CMV therapy was shown to have acceptable oral bioavailability and was safe and effective in controlling CMV infection in allogeneic HCT recipients, including patients with grades I and II GI GVHD. Thus, valganciclovir is a highly acceptable oral option for preemptive therapy for CMV in the absence of substantial GI GVHD. Reports of higher rates of CMV disease with oral valganciclovir compared to IV ganciclovir in patients with hepatic dysfunction restricted approval for solid tumor transplant patients by specifically excluding liver transplant patients. It is postulated hepatic dysfunction allows bioabsorption of valganciclovir, but decreases cleavage of the valine ester thereby limiting conversion to the active form.
Cidofovir has been evaluated as both primary and secondary preemptive therapy in allogeneic HCT recipients. In a retrospective study of allogeneic HCT recipients (N = 82) treated for CMV disease (n = 20), primary preemptive therapy (n = 24), or secondary preemptive therapy (n = 38) with cidofovir demonstrated an observed response in 50% of patients treated for CMV disease (mainly CMV pneumonia) and 62% for primary preemptive therapy. Moreover, secondary preemptive therapy with cidofovir resulted in a response rate of 66% in patients where treatment failed or relapse occurred (defined as continued presence or recurrence of pp65 antigenemia or viral DNA after at least 1 week of antivirals) following initial preemptive therapy with ganciclovir, foscarnet, or the combination of these agents.

Late CMV disease, defined as occurring after day 100 of HCT, remains a persistent problem in the era of CMV prophylaxis and preemptive therapy. In one series, 92% of patients with late CMV pneumonia had chronic GVHD or had received T-cell–depleted transplants. Results of T-cell reconstitution at 3 months after allogeneic HCT appear to be useful in risk stratification for late CMV disease. CD4+ T-cell counts less than 50 cells/mcL, total lymphocyte counts less than 100 cells/mcL, undetectable CMV-specific T-cell responses, and GVHD were all associated with late CMV disease or death in CMV-seropositive allogeneic HCT recipients. In addition, a CD4+ cell count less than 100 cells/mcL, a CD8+ count less than 50 cells/mcL, and use of high-dose steroids (2 mg/kg/d or greater) were significantly predictive of delayed recovery of CMV-specific immunity at 3 months after allogeneic HCT; use of steroids impaired both CD4+ and CD8+ T-cell function in a dose-dependent manner. In patients who did not receive high-dose steroids and received CMV prophylaxis with ganciclovir, subclinical CMV antigenemia appeared to stimulate functional recovery of both CD4+ and CD8+ cells. This finding may have implications for investigating potential CMV vaccine strategies in this clinical setting.

CMV reactivation is common among patients with lymphoproliferative malignancies (most commonly, CLL) receiving alemtuzumab therapy, and occurs most frequently between 3 to 6 weeks after initiation of therapy when T-cell counts reach a nadir. Several studies of alemtuzumab in patients with CLL have demonstrated the effectiveness of using routine CMV monitoring coupled with preemptive anti-CMV therapy with ganciclovir in preventing overt CMV disease. A small randomized study in patients with lymphoproliferative disease treated with alemtuzumab-containing regimens (N = 40) showed that upfront CMV prophylaxis with oral valganciclovir significantly reduced the incidence of CMV reactivation compared with oral valacyclovir (0% vs. 35%; P = .004).

NCCN Recommendations for CMV Prophylaxis

Based on the available data that predict the risk of CMV disease, the NCCN Guidelines Panel recommends routine CMV surveillance after allogeneic HCT, together with preemptive anti-CMV therapy with oral valganciclovir or IV ganciclovir. In cases of ganciclovir-resistant CMV or when ganciclovir is not tolerated (eg, ganciclovir-induced myelosuppression), IV foscarnet or IV cidofovir may be used (see Prevention of Cytomegalovirus Reactivation or Disease in the algorithm). Surveillance should typically occur for 1 to 6 months post-transplant and during chronic GVHD requiring IST. Note that the CD4+ count will be reduced by systemic corticosteroids and by other lymphocyte-depleting agents. The majority of cases of late CMV disease occur within the first year of transplant and less than 5% occur after the second year. Therefore, the value of CMV surveillance beyond 2 years after HCT is unknown but can be considered in patients with significant chronic GVHD. There is debate about how to treat...
patients after a negative test for CMV. There are not enough data to determine whether patients should be transitioned to surveillance or continue with chronic maintenance therapy, and if so, for how long. The benefits must be weighed against the potential toxicity associated with long-term antiviral use. Ganciclovir and valganciclovir are associated with bone marrow suppression that may increase the risk of common opportunistic infections. Foscarnet can cause nephrotoxicity and electrolyte abnormalities but is tolerated. Cidofovir can be associated with substantial nephrotoxicity, although less frequent, ocular toxicity has been reported. Acyclovir and valacyclovir have an excellent safety profiles but are only weakly active against CMV and are not recommended as prophylaxis or treatment of CMV infection.

The NCCN Guidelines Panel recommends routine surveillance for CMV reactivation using polymerase chain reaction (PCR) and weekly monitoring during alemtuzumab therapy and at least 2 months after completion of treatment. Upon confirmation of CMV viremia (defined as PCR positivity for CMV in ≥ 2 consecutive samples obtained 1 week apart), the panel recommends preemptive therapy with oral valganciclovir or IV ganciclovir for at least 2 weeks and until CMV is no longer detectable (see Prevention of Cytomegalovirus Reactivation or Disease in the algorithm). IV foscarnet or IV cidofovir should be used for cases of ganciclovir-resistant CMV or when ganciclovir is not tolerated (eg, ganciclovir-induced myelosuppression). Following a negative test of CMV, there are not enough data to determine whether patients should continue with chronic maintenance therapy, and if so, for how long, or move to surveillance.

For the prevention and treatment of CMV, adjunctive IVIG can be administered, however IVIG is generally not recommended for prophylactic use except in limited situations due to cost and the limited evidence of activity of this treatment. Although no optimal dosing regimen has been determined, IVIG is commonly administered every other day for 3 to 5 doses. CMV-specific IVIG has not been shown to be any more efficacious than standard IVIG.

Hepatitis B Virus
The risk factors for HBV infection include personal or parental history of an intermediate to high prevalence of HBV infection in their birthplace (defined as a prevalence of hepatitis B surface antigen [HBsAg] positivity in greater than 2% of the population), household and sexual contact with HBsAg+ persons, individuals with multiple sexual partners or history of sexually transmitted diseases, individuals who have been inmates of correctional facilities, patients with chronically elevated AST or ALT levels, patients with a history of injection drug use, men who have sex with other men, and patients positive for hepatitis C virus (HCV) or HIV.

A positive HBsAg is associated with active infection or a window period before the development of protective immunity in a patient exposed to HBV. An individual who has been vaccinated for HBV typically has the following serology: negative HBsAg, positive hepatitis B surface antibody (HBsAb), and negative hepatitis B core antibody (HBcAb). False-negative HBsAg results may occur in patients with chronic liver disease. HBsAb positivity is generally equated with protective immunity, although reactivated HBV disease may occur in the setting of significant immunosuppression in HBcAb-positive individuals. A patient with resolved hepatitis B infection will be HBcAb positive but HBsAg negative. As mentioned above, some patients with cancer are at increased risk for HBV reactivation due to profound immunosuppression stemming from cytotoxic regimens and/or the underlying malignancy (eg, leukemia, lymphoma).
Patients with malignancies who are HBsAg positive and/or HBCab positive are at risk for HBV reactivation with cytotoxic chemotherapy. Approximately 20% to 50% of patients with HBsAg positivity and 3% to 45% with HBCab positivity develop HBV reactivation.56,259,262-270 Complications of HBV reactivation can range from self-limited hepatitis to fulminant hepatic failure and death.270-275 HBV reactivation can lead to early discontinuation or delayed initiation of treatment.276,277 In patients with B-cell lymphoid malignancies treated with rituximab-containing regimens, HBV reactivation was observed in patients with HBCab positivity (with or without HBsAb positivity), even among those who were HBsAg negative prior to initiation of treatment.56,264,270 In a recent meta-analysis and evaluation of the U.S. Food and Drug Administration (FDA) safety reports, it was reported that HBCab positivity correlated with increased incidence of rituximab-associated HBV reactivation.263 A retrospective study showed that allogeneic HCT recipients who were HBsAg negative but HBCab positive had a high risk of seroconversion to HBsAg positivity and HBV reactivation (subsequently leading to hepatitis) following allogeneic HCT.278 After allogeneic HCT, loss of HBV-specific immunity may occur (ie, loss of HBsAb and development of HBsAg and HBV PCR positivity). This has been observed in up to 40% of susceptible individuals in one report279 and may be confused with hepatic GVHD.

There are several nucleos(t)ide analogs approved by the FDA for the prevention and treatment of HBV. Historically, data supporting the use of these analogues have been based on lamivudine, a reverse transcriptase inhibitor. Antiviral prophylaxis with lamivudine has been shown to reduce the risks for HBV reactivation in HBsAg-positive patients with hematologic malignancies treated with IST.280-282 In a meta-analysis of clinical trials evaluating lamivudine prophylaxis in HBsAg-positive lymphoma patients treated with IST, prophylaxis resulted in a significant reduction in HBV reactivation (risk ratio, 0.21; 95% CI, 0.13–0.35) and a trend for reduced HBV-related deaths (risk ratio, 0.68; 95% CI, 0.19–2.49) compared with no prophylaxis.282 In allogeneic HCT recipients considered at high risk for HBV reactivation (ie, HBsAg-positive recipient or donor, or HBsAg-negative/HBCab-positive recipient), antiviral prophylaxis with lamivudine demonstrated effective control of HBV reactivation and reduced the risk for developing hepatitis.268,283 However, despite its initial effectiveness, virologic breakthrough was high, with reports of resistance in 80% of patients after 5 years of therapy.284 Thus lamivudine monotherapy has fallen out of favor. Recent studies suggest one of the newer agents (such as entecavir or tenofovir) may be preferable or combination therapy may have a possible role for patients with lamivudine-resistant HBV infections.285,286

Tenofovir has demonstrated superior antiviral efficacy compared with adefovir in a phase III randomized double-blind study in patients with chronic HBV infection, and is the preferred agent in this setting;287 however, limited data are available regarding its use in patient populations with cancer. No detectable resistance to tenofovir was reported in patients with chronic hepatitis B after 6 years of treatment.288 In another study, sequencing of the HBV polymerase/reverse transcriptase indicated sequence changes at polymorphic sites, though none resulted in drug resistance.289 In total, there were only 16 cases of virologic breakthrough, of which 12 were associated with nonadherence to study medication. Resistance for tenofovir remained undetectable throughout a 5-year span. By comparison, lamivudine resistance was calculated to be 24% in the first year, and this number steeply climbed to 70% by year 5. 289

Entecavir and telbivudine have shown improved antiviral activity compared to adefovir in randomized open-label studies in patients with...
chronic hepatitis B. A few small case studies have evaluated entecavir in the prevention or treatment of HBV in patients with cancer (reviewed by Liu et al). Entecavir had a low drug resistance of 1.2% at 5 years compared to adefovir, which had an intermediate resistance that increased from 0% in the first year to 29% by year 5. Conversely, telbivudine had a higher resistance, reaching 17% in the second year. Greater than 10% of patients in a phase III clinical trial who did not have genotypic resistance after 2 years and continued to receive telbivudine developed resistance after 4 years.

In addition to drug resistance, the safety profile of the nucleos(t)ide analogues should affect drug selection. Nephrotoxicity has been seen with adefovir and tenofovir, while myopathy and neuropathy are more commonly associated with telbivudine. No significant side effects have been reported with lamivudine or entecavir; however, it is recommended that all patients be monitored for lactic acidosis and severe hepatomegaly with steatosis.

NCCN Recommendations for HBV Prophylaxis

Risk-based screening is recommended by the American Society of Clinical Oncology and the American Association for the Study of Liver Disease (AASLD). Although it is possible that risk-based screening may be more cost-effective than universal screening, there are currently no validated risk tools that could be easily implemented into clinical practice. Furthermore, less than 60% of patients with HBV infection may have obvious risk factors, and only 10% to 35% of infected patients may be aware of their own HBV infection. Therefore, any patient expected to receive IST or chemotherapy should be screened. Implementation of universal screening, as recommended by the CDC, should be considered. In patients undergoing intensive IST, including HCT, both patient and donor should be screened for HBV, HCV, and HIV prior to treatment. Evaluation of HBsAg, HBcAb, and HBsAb should be considered at baseline. Vaccination against HBV should be strongly considered in HBV-naïve patients (ie, negative for HBsAg, HBsAb, and HBC) (see Vaccination). In HBV-naïve patients undergoing allogeneic HCT, grafts from HBsAg-positive or HBV DNA-positive donors should be avoided wherever possible. Donors who have not been exposed to HBV should be considered for HBV vaccination before hematopoietic cell collection.

In HBsAg-positive or HBcAb-positive individuals, baseline quantitative PCR for HBV DNA should be obtained. In allogeneic HCT candidates with evidence of active HBV infection (chronic hepatitis based on biopsy or positive HBsAg or high levels of HBV DNA), transplant procedure should be delayed when possible, and antiviral therapy should be given for 3 to 6 months prior to conditioning. In HCT candidates who are HBsAg-positive or HBcAb-positive but without evidence of active HBV replication, antiviral prophylaxis should be considered (starting shortly before the transplant procedure). All allogeneic HCT recipients should continue surveillance until 6 to 12 months after transplant or during GVHD.

Similarly, the NCCN Guidelines for NHL recommend HBsAg and HBcAb testing for all patients with B-cell NHL planned for treatment with anti-CD20 monoclonal antibody-containing regimens (see NCCN Guidelines for NHL). The panel recommends that baseline quantitative PCR for HBV DNA be obtained to determine viral load in patients who test positive for HBsAg and/or HBcAb. For patients undergoing anti-tumor therapy, the NHL panel suggests prophylactic antiviral therapy (for cases of HBsAg positivity; also preferred for HBsAg-negative/HBcAb-positive cases) or preemptive antivirals upon
detection of increasing viral load (an option for HBsAg-negative/HBcAb-positive cases with concurrent high levels of HBsAb). During anti-tumor therapy, HBV viral load should be monitored via PCR monthly, then every 3 months after treatment completion. Prophylaxis with antivirals should be continued (for up to 12 months after completion of anti-tumor therapy) if viral load remains undetectable. The optimal choice of antiviral agents for prophylaxis (or preemptive approaches) will primarily be driven by institutional standards. Monitoring of viral load and transaminases should be considered for patients without active HBV infection who are not receiving prophylaxis.

In addition to patients at risk for HBV, the NCCN panel recommends that any patient expected to receive IST or chemotherapy should be screened prior to treatment. Preferred agents for HBV prophylaxis are entecavir, tenofovir, and lamivudine. Monitoring of viral load and transaminases should be considered for patients without active HBV infection who are not receiving prophylaxis.

Hepatitis C Virus

Studies for HCV reactivation in patients with cancer are not as expansive as studies for hepatitis B; however, an increase in mortality was reported in patients with cancer who had HCV infection compared to patients with cancer who were HCV negative. A review by Yazici et al summarized studies of HCV reactivation in patients receiving targeted therapies and the data correlated an increase in HCV reactivation with these therapies. Differences in outcomes between patients who are HCV positive with cancer versus HCV positive without cancer were reported to include higher occurrence of occult infection, higher risk of developing early cirrhosis, higher rate of fibrosis progression, development of viral reactivation, and poorer virologic outcomes (reviewed by Borchardt et al). The guidelines from the joint IDSA and AASLD panels for the testing, managing, and treating of hepatitis C recommend that treatment for HCV be considered for patients with chronic HCV with a life expectancy of greater than 12 months.

NCCN Recommendations for HCV Screening and Management

Patients who should be screened for HCV include all patients receiving chemotherapy or IST. The data are limited regarding the treatment of HCV in patients with cancer, but it is generally not recommended that HCV treatment and cancer therapy be given concurrently. The IDSA/AASLD guidelines can provide additional guidance for antiviral therapy, but an infectious diseases consult is necessary to evaluate the use of concomitant or sequential anti-HCV and cancer therapy. Monitoring of ALT levels and HCV viral load monthly, or as clinically indicated, should be initiated as part of surveillance. The NCCN Guidelines for NHL address the management of HCV infection in patients with HCV-associated lymphomas (see *NCCN Guidelines for NHL*).

Human Immunodeficiency Virus

The CDC surveillance report estimates that 1.2 million persons aged 13 and older are living with HIV in the United States. This includes the estimated 156,300 persons whose infection has not yet been diagnosed. There is support for HIV testing in all patients treated for cancer. Patients who are HIV-positive and have cancer are classified as having either AIDS-defining cancer (ADC) or non-AIDS-defining cancer (NADC). ADC includes Kaposi sarcoma, NHL, and cervical cancer. There is a higher incidence of these cancers in HIV-positive patients than in HIV-negative patients.

The incidence of NADC is increasing, likely due to the longer life expectancy of HIV-positive patients resulting from the advancement of
treatment options.321 HIV-positive patients with NADC were shown to have an overall worse cancer outcome when compared to HIV-negative patients with the same cancer.322 However, improvement in outcome was seen when HIV-positive patients received highly active antiretroviral therapy (HAART).323 There should be caution regarding the concomitant administration of select antiretroviral therapies (including the protease inhibitors and non-nucleoside reverse transcriptase inhibitors) and cancer therapy as adverse events through cytochrome P450 3A4 have been documented.324 A recent publication from MD Anderson Cancer Center retrospectively evaluated the use of HIV screening in patients prior to systemic cancer therapy.325 Out of the 18,874 patients in this study, there were 3514 patients who tested positive for HIV at the initiation of systemic cancer therapy. Patient histories indicated a higher incidence in patients with sexually transmitted disease (37.7\% vs. 18.5\%; $P < .001$) or a history of illegal drug use (46.2\% vs. 18.6\%; $P < .001$). Patients screened for HIV included 12.1\% of patients with NADC, and 9.4\% of patients with cervical cancer. Interestingly, a significantly higher percentage (88.4\%) of patients with NHL were screened for HIV, which may be partially attributed to clinician education of the role of HIV in these patients.325

NCCN Recommendations for HIV Screening

In 2006, the CDC published recommendations for routine HIV testing in all patients (13–64 years of age) in the health care setting.326 The testing is intended to be voluntary and conducted only with consent from patients. Under these guidelines, patients are informed either verbally or in written format that HIV testing will be conducted unless the patient declines testing (opt-out screening). The CDC recommends that patients at high risk for HIV infection be screened at least annually.326 The implementation of these guidelines is largely dependent upon institutional practices and the prevalence of undiagnosed HIV infections in specific institutions. However, the NCCN panel strongly encourages concordance with the CDC recommendations.

In addition to the CDC recommendations, the NCCN panel emphasizes that all patients receiving chemotherapy or IST be screened for HIV.319 Patients co-infected with hepatitis pose an additional complication. Select antiretroviral therapies including the integrase-strand inhibitors and nucleoside/nucleotide reverse transcriptase inhibitors have demonstrated fewer drug-drug interactions compared with the protease inhibitors and non-nucleoside reverse transcriptase inhibitors. However, consultation with an infectious disease expert is necessary for treatment of HIV in patients with cancer as therapies continuously evolve. Patients should be monitored monthly during therapy and then as clinically indicated.

Screening for Other Viruses

Rapid PCR panels should be considered for detection of respiratory viruses including RSV, influenza, parainfluenza virus, adenovirus, rhinovirus, and metapneumovirus in patients with cough and/or shortness of breath that might indicate a viral infection (see \textit{Evaluation of Site-specific Infections, Lung} for discussion on non-viral causes). Ribavirin and IVIG have been proposed as antiviral therapies,327-331 however, data are not sufficient to provide recommendations.

RSV is a major cause of severe infection in the immunocompromised with mortality rates up to 80\% in HCT recipients.332,333 Progression of RSV to the lower respiratory tract occurs in up to half of patients receiving HCT or chemotherapy.334-336 The virulent nature of RSV requires hospitalization for treatment. Treatment options are limited to ribavirin and adjunctive IVIG. There is a diversity of practice among the institutions for the treatment of RSV disease. Based on limited data337,338 and strong panel disagreement regarding the use of ribavirin,
and if used, the best method of delivery, ribavirin was designated a category 3 recommendation. Recommendations for inhaled versus oral ribavirin should be based on the individual institution.

Rapid screening tests are available for detection of influenza. Clinical benefit is highest when treatment is initiated within the first 48 hours of influenza symptoms although benefits can still be seen when initiated after the 48-hour window. During the influenza season, consider empiric antiviral therapy for patients within 48 hours after symptoms develop that are suggestive of influenza (eg, high fever, coryza, myalgia, dry cough), especially during community outbreaks. Both the IDSA (2007) and CDC guidelines (2011) recommend antiviral treatment with the neuraminidase inhibitors oseltamivir or zanamivir, which are active against both influenza A and B viruses. Both agents are approved by the FDA for the treatment of influenza within 48 hours of symptomatic onset; the indicated duration of treatment is 5 days. However, longer courses of treatment (eg, 10 days) and until resolution of symptoms can be considered in immunocompromised patients, though this is controversial. Some centers have used higher doses (eg, 150 mg BID) of oseltamivir in these patients with mixed results.

Pandemic influenza does not have a predictable seasonal pattern, and may spread in the community concurrently with a seasonal influenza strain. Antiviral susceptibility of influenza strains is variable and cannot be predicted based on previous influenza outbreaks. In cases of seasonal influenza and pandemic strains, it is necessary to be familiar with susceptibility patterns and guidelines on appropriate antiviral treatment. There are some data on the activity of peramivir; however the activity has been uneven across studies. Peramivir, available only as an IV injection, can be considered for patients that cannot absorb oral oseltamivir or tolerate oseltamivir or inhaled zanamivir (see Site-specific Evaluation and Treatment of Infections: Lung).

BK virus is a common polyomavirus that remains dormant in the kidney and urinary tract. In immunosuppressed individuals, BK virus can reactivate. Patients undergoing allogeneic HCT are particularly vulnerable to BK virus and the development of hemorrhagic cystitis. While cidofovir demonstrates effectiveness as a treatment option for BK virus, renal toxicity is a significant complication. There is currently a lack of data to support recommendations on the treatment of BK virus.

Vaccination

Vaccination in patients with cancer can reduce the morbidity and mortality associated with infection. In general, patients with hematologic malignancies have a greater risk for infection than patients with solid tumors. HCT patients may lose immunity to pathogens post-transplant. Therefore, the vaccination recommendations for these patients are more expansive than the recommendations for the general population of patients with cancer. In any immunocompromised patient, live attenuated viral vaccines (LAIV) have the potential to cause disease; however, inactivated vaccines can be safely administered. Although the immunogenicity of the vaccines may be reduced in immunocompromised patients, the potential for protection conferred by antigen-derived vaccines, even if incomplete, is better than no protection if the vaccine is withheld.

Influenza Vaccine

Influenza infections cause significant morbidity and mortality in patients with cancer. Among bone marrow transplant recipients, influenza accounts for about 10% to 40% of all community-acquired viral respiratory infections. An increase in both the incidence and duration of influenza infections has been observed in patients with cancer who are immunosuppressed compared to healthy controls. During community outbreaks, influenza infections may represent a
significant proportion of fever and neutropenia episodes. Influenza infections in patients with cancer who are severely immunocompromised are often associated with hospitalizations, delays in potentially life-saving chemotherapy, and occasionally death. As a result, annual vaccination against influenza with the inactivated influenza virus is recommended for all individuals at increased risk due to immunosuppression. The Advisory Committee on Immunization Practices (ACIP) for the CDC guidelines includes health care professionals and household members or caregivers in their target group for annual immunization to prevent transmission of influenza to high-risk patients.

The intranasal vaccine should be avoided in patients with immunosuppression, because a LAIV is still capable of replication, which could theoretically lead to infection in immunocompromised individuals. Because no data are available assessing the risk for person-to-person transmission of the LAIV from vaccine recipients to immunosuppressed contacts, the CDC recommends that inactivated influenza vaccine should be used in household contacts, health care workers, and others who have close contact with severely immunocompromised patients (i.e. persons requiring a protected environment). Persons with close contact to patients with a lesser degree of immunosuppression (e.g. patients receiving chemotherapy or corticosteroids, HIV-positive patients) may receive the LAIV.

Meningococcal Conjugate Vaccine
The meningococcal vaccine is recommended for patients with increased risk for meningococcal disease including patients with persistent complement component deficiency, patients taking eculizumab, and patients with anatomic or functional asplenia. The ACIP recommends that asplenic persons be immunized with the meningococcal vaccine. The meningococcal vaccine should be administered at least 2 weeks before elective splenectomy. Penicillin prophylaxis is advised in asplenic patients to prevent pneumococcal disease.

Pneumococcal Vaccine
The pneumococcal conjugate vaccine can be given in newly diagnosed adults with hematologic or solid tumor malignancies following assessment of their immune status. The conjugate pneumococcal vaccine (PCV13) should be administered to newly diagnosed adults with cancer who are pneumococcal vaccine-naïve, followed by the polysaccharide pneumococcal vaccine (PPSV23) at least 8 weeks later. Subsequent doses of PPSV23 should follow current PPSV23 recommendations for adults at high risk. For patients who have previously received PPSV23, the PCV13 dose should be given at least 1 year after the last PPSV23 dose. For those who require additional doses of PPSV23, the first such dose should be given no sooner than 8 weeks after the PCV13 dose.

Vaccination with the conjugated 13-valent vaccine 6 to 12 months after HCT followed by the polysaccharide pneumococcal vaccine at least 1 year after cessation of immunosuppression in HCT is recommended with revaccination with the polysaccharide pneumococcal vaccine after 5 years. Patients with asplenia should receive the pneumococcal vaccine. The pneumococcal vaccine should be administered at least 2 weeks before elective splenectomy. Penicillin prophylaxis is advised in asplenic patients to prevent pneumococcal disease.

Meningococcal Conjugate Vaccine
The meningococcal vaccine is recommended for patients with increased risk for meningococcal disease including patients with persistent complement component deficiency, patients taking eculizumab, and patients with anatomic or functional asplenia. The ACIP recommends that asplenic persons be immunized with the meningococcal vaccine. The meningococcal vaccine should be administered at least 2 weeks before elective splenectomy. The conjugated meningococcal vaccine (MCV4) is preferred in adults 55 years of age or younger, because it confers longer lasting immunity than the polysaccharide vaccine. Re-vaccination for the meningococcal vaccine with MCV4 after 5 years is recommended for functional asplenic patients who received MCV4 or MPSV4. The meningococcal vaccine is also recommended 6 to 12 months after HCT.
Human Papillomavirus Vaccine

The human papillomavirus (HPV) vaccine is a recombinant 3-dose vaccine that can be given to patients up to 26 years of age. The lower age limit for this vaccine is 9 years of age. There is no evidence to suggest that this vaccine is helpful for patients who are already HPV positive at the time of vaccination.

Haemophilus influenzae type b Vaccine

Immunization of adults with the pediatric *H influenzae* type b (Hib) vaccine is considered optional because of limited data on efficacy in older children and adults, although studies suggest good immunogenicity in immunocompromised patients. The Hib vaccine is recommended 6 to 12 months post-HCT. For patients with planned splenectomy, immunization is ideally performed at least 2 weeks in advance. If this is not feasible, immunization is advisable after splenectomy, because such patients are still capable of mounting a protective antibody response.

Varicella/Zoster Vaccines

The varicella/zoster vaccines are live vaccines and should be given no earlier than 24 months following HCT. The varicella vaccine may be administered to HCT recipients who are seronegative for varicella, and who do not have GVHD or ongoing immunosuppression. Because of limited data in using the varicella vaccine among HCT recipients, physicians should assess the immune status of each recipient on a case-by-case basis and determine the risk for infection before using the vaccine. For patients who are seropositive for varicella, the zoster vaccine may be advisable (category 3). Because of insufficient data for the safety and efficacy of the zoster vaccine among HCT recipients, physicians should assess the immune status of each recipient and assess the potential benefit before using the vaccine. Specific antivirals (ie. acyclovir, famciclovir, and valacyclovir) cannot be given within the 24 hours before vaccination nor during the 14 days after vaccination.

Vaccine Summary

Although efficacy data are lacking for the use of vaccines in patients with cancer, recommendations for their use are based on the principles of immunization and safety data. Persons receiving chemotherapy or radiation therapy for malignancies should not LAIV for at least 3 months after cessation of therapy and until the patient is presumed to be immunocompetent. Data are emerging that indicate a reduced response to vaccination in patients receiving IST. In patients receiving blinatumomab, suppressed immunoglobulin levels were measured that persisted through the first year following the conclusion of treatment. Similarly anti-CD20 therapy has correlated with decreased serum immunoglobulins. Live vaccines are contraindicated during treatment and for a period of at least 6 to 12 months in patients who are receiving IST (eg. blinatumomab, CAR T-cells, monoclonal antibodies). These patients may also have a blunted response to inactivated vaccines. Certain live viral vaccines can be safely administered to household members of severely immunocompromised patients (eg, measles, mumps, rubella [MMR]), whereas others cannot (eg, smallpox vaccine) because of the potential risk of transmission. The package insert for the vaccine should be reviewed prior to administration.

Ideally, patients should be vaccinated at least 2 weeks before receiving cytotoxic therapy or IST; however, this timing is often not feasible in patients with cancer. In general, vaccination should not be given on the same day as cytotoxic therapy as cytotoxic therapy may reduce the proliferative lymphocytic responses required for protective immunity. In patients receiving chemotherapy, immunization between cytotoxic chemotherapy courses is likely to be associated with higher response rates than during chemotherapy administration.
vaccinated less than 2 weeks before starting cytotoxic therapy or IST or while receiving these agents may have a limited response to vaccination. These patients should be revaccinated at least 3 months after therapy is discontinued and once immune competence has been restored.

In summary, the NCCN panel recommends that patients with cancer receive the influenza, pneumococcal, meningococcal, and HPV vaccines. HCT recipients should also receive the inactivated vaccines for diphtheria/tetanus/acellular pertussis (DTaP), Hib, hepatitis A and B, and polio. The live vaccine for MMR may be given if no GVHD or ongoing immunosuppression is seen two years post-transplant in patients who are seronegative. The live varicella vaccine may also be given two years post-transplant if the patient is seronegative. There remains disagreement among the panel about the zoster vaccine.

Protected Environments

Although well-designed clinical trials have not validated the use of high-efficiency particulate air (HEPA) filtration, the CDC recommends that allogeneic HCT recipients be placed in rooms with HEPA filters. It is also reasonable to use HEPA filtration in nontransplant patients with prolonged neutropenia. The principal benefit of HEPA filtration is likely to be related to the prevention of mold infections. In a retrospective analysis, HEPA filters were protective in highly immunocompromised patients with hematologic malignancies in the setting of an outbreak of aspergillosis. The value of laminar air flow in preventing infections is unclear and is not generally recommended.

Management of Neutropenic Patients With Fever

The definitions of fever and neutropenia in the NCCN Guidelines are consistent with those developed by the IDSA and FDA for evaluating antimicrobial therapy for fever and neutropenia. Fever is defined as a single oral temperature 38.3°C (or equivalent) or higher or 38.0°C or higher over 1 hour in the absence of an obvious cause. Axillary or rectal temperature measurements should be avoided. Although uncommon, a patient with neutropenia and signs or symptoms of infection (eg, abdominal pain, severe mucositis, perirectal pain) without fever should be considered to have an active infection. The concomitant administration of corticosteroids may blunt fever response and any localized signs of infection. The NCCN Guidelines define neutropenia as either 1) an ANC less than 500 neutrophils/mcL, or 2) an ANC less than 1000 neutrophils/mcL and a predicted decline to 500 neutrophils/mcL or less over the next 48 hours.

Initial Evaluation

The initial evaluation should focus on determining the potential sites and causative organisms of infection and on assessing the patient’s risk of developing an infection-related complication. A site-specific history and physical examination should be performed promptly, cultures should be obtained, and empiric antibiotics should be started soon after the time of presentation (see Initial Evaluation of Fever and Neutropenia in the algorithm). The common sites of infection for patients with fever and neutropenia (such as the alimentary tract, skin, lungs, sinuses, ears, perivaginal/perirectal, urological, neurological, and intravascular access device sites) should be thoroughly assessed. Other important factors in patient history to consider include major comorbid illness, medications, time since last chemotherapy administration, recent antibiotic therapy, and exposure to infections from household members (see Initial Evaluation of Fever and Neutropenia in the algorithm).

Initial laboratory/radiology evaluation should include a complete blood count with differential analysis and blood chemistry tests to assess liver
function (eg, total bilirubin, albumin, ALT, AST) and renal function (eg, blood urea nitrogen, creatinine, electrolytes). Oxygen saturation and urinalysis should be considered, depending on symptoms. Chest radiographs should be done for all patients with respiratory signs or symptoms; however, radiographic findings may be absent in neutropenic patients with pulmonary infection. Infections Table of Contents

Cultures
Culture specimens should be collected during or immediately after completing the examination. Two blood samples should be cultured. When obtaining blood cultures, there are 3 options: 1) one set can be obtained peripherally and one can be obtained from a central venous catheter (preferred); 2) both sets can be obtained peripherally; or 3) both sets can be obtained through the catheter (see Initial Evaluation of Fever and Neutropenia in the algorithm). The positive predictive value (PPV) of a catheter culture is less than of a peripheral culture. Obtaining blood for culture from both the central venous catheter and peripherally may help determine whether the venous access device (VAD) is the source of a bloodstream infection based on the differential time to positivity (DTP). However, some experts recommend that only blood from the VAD needs to be obtained for culture, without the requirement for a peripheral vein blood culture. A meta-analysis has shown little clinical use for two-site culturing in patients with cancer who have a VAD, and poor patient acceptance of peripheral venipunctures when a VAD is in place. The panel consensus is that the volume of blood for culture is the most important aspect of blood culturing; however, the panel recommends obtaining one peripheral and one catheter culture for distinguishing between catheter-related infections and from secondary sources.

In the absence of lesions or clinical signs and symptoms, routine cultures of the anterior nares, oropharynx, urine, stool, and rectum are rarely helpful. Diarrheal stools suggestive of infection should be tested for the presence of C difficile. In patients with diarrhea, consider screening for enteric pathogens including rotavirus and norovirus in winter months and during outbreaks. Symptoms of urinary tract infection should be evaluated with a urinalysis and culture. Vascular access site inflammation or drainage should be cultured. Biopsy with microbiologic and pathologic evaluation should be considered for new or undiagnosed skin lesions (see Initial Evaluation of Fever and Neutropenia in the algorithm). Viral cultures of vesicular or ulcerated mucosal or cutaneous lesions may identify HSV infections. In patients with symptoms of respiratory viral infection, viral cultures and rapid viral antigen testing of the nasopharyngeal secretions can be useful during local outbreaks of such infections. However, note that rapid immunofluorescent viral antigen tests may still result in a false negative for H1N1 (swine flu).

Initial Empiric Antibiotic Therapy
The foundation of infection management is to administer empiric antibiotics in patients with fever and neutropenia. This approach is necessary, because currently available diagnostic tests are not sufficiently rapid, sensitive, or specific to identify or exclude microbial causes of fever from other noninfectious causes. All neutropenic patients should be treated empirically with broad-spectrum antibiotics promptly at the first sign of infection (ie, fever). This is done to avoid the mortality associated with a delay in treatment in patients with a serious infection. Many highly effective antibiotic regimens are available, and are recommended based on data from randomized clinical trials.

Selection of initial therapy should consider the following:

• The patient’s infection risk assessment;
The antimicrobial susceptibilities of pathogens isolated locally;
• The most common potentially infecting organisms, including antibiotic-resistant pathogens, such as extended spectrum beta-lactamase–producing gram-negative rods, vancomycin-resistant enterococcus (VRE), and colonization with or previous infection with methicillin-resistant S aureus (MRSA);
• The potential sites of infection;
• The importance of a broad-spectrum bactericidal antibiotic regimen that includes antipseudomonal coverage;
• Clinical instability (eg, hypotension, organ dysfunction);
• Drug allergy;
• Recent antibiotic use (including prophylaxis); and
• Bactericidal nature of the antibiotic.

Recommended Approaches

The panel recommends the following approaches to initial empiric management of febrile neutropenia to be appropriate based on the results of large, randomized, controlled clinical trials (see Initial Empiric Therapy for Fever and Neutropenia in the algorithm).4,7,380

The first approach is IV antibiotic monotherapy (all category 1 except where noted) with imipenem/cilastatin, meropenem, piperacillin/tazobactam, or an extended-spectrum antipseudomonal cephalosporin (cefepeime [category 1] or ceftazidime [category 2B]) for uncomplicated infections.2,381-384 Local institutional bacterial susceptibilities should be considered when selecting empiric antibiotic therapy. In hospitals where infections caused by antibiotic-resistant bacteria (eg, MRSA or drug-resistant gram-negative rods) are commonly observed, policies on initial empiric therapy of neutropenic fever may need to be tailored accordingly.

A meta-analysis of randomized trials reported that cefepime was associated with increased all-cause mortality when used as empiric therapy for neutropenic fever, although no increase in infection-related mortality was noted.385,386 However, a subsequent meta-analysis by the FDA, using additional data, did not find a statistically significant increase in mortality for cefepime-treated patients compared with controls. Thus, the FDA concluded that cefepime remains an appropriate therapy for its approved indications.387,388

The second approach for initial empiric therapy for low-risk patients with fever and neutropenia is oral antibiotic combination therapy (see Initial Empiric Therapy for Fever and Neutropenia in the algorithm). Ciprofloxacin plus amoxicillin/clavulanate is recommended (category 1), with the option of ciprofloxacin plus clindamycin for patients allergic to penicillin. Moxifloxacin is also a category 1 recommendation. Fluoroquinolone regimens should not be administered in patients receiving antimicrobial prophylaxis with a fluoroquinolone.

Intravenous antibiotic monotherapy is the preferred treatment option for complicated infections. However, intravenous antibiotic combination therapy, though not routinely recommended, may be considered in complicated or resistant cases. In such situations, an aminoglycoside combined with an antipseudomonal agent can be considered.389-391

Aminoglycoside use carries the inherent risk of renal and otic toxicity. Avoiding these toxicities requires careful monitoring and necessitates frequent reassessment, but once-daily aminoglycoside dosing is associated with less renal toxicity than shorter interval dosing.392 Once-daily aminoglycoside dosing should probably not be used for treating meningitis or endocarditis based on inadequate clinical data. The use of vancomycin, linezolid, daptomycin, or quinupristin/dalfopristin is not routinely recommended. Although published studies exist regarding the use of some of these agents in neutropenic patients, the panel strongly...
Prevention and Treatment of Cancer-Related Infections

Infections Table of Contents

Discussion

Prevention and Treatment of Cancer-Related Infections

recommends that these agents not be used routinely as initial empiric therapy because of concerns for resistance and breakthrough infections.

For patients at high risk for Pseudomonas infections (eg, history of previous Pseudomonas infections, presence of ecthyma gangrenosum), initial combination therapy with the most active antipseudomonal agents available in the local setting should be considered.

For specific indications, the addition of IV vancomycin either to IV monotherapy or to combination therapy (see Empiric Addition of Vancomycin) may be considered. Support for the judicious use of vancomycin has developed because of the increased frequency of beta-lactam–resistant gram-positive infections caused by MRSA, most coagulase-negative staphylococci, penicillin-resistant viridans group streptococci and enterococci, and Corynebacterium jeikeium. Vancomycin should be reserved for specific indications and should not be considered as a routine component of initial therapy for fever and neutropenia.

Empiric Addition of Vancomycin

Considerable debate has occurred about the use of empiric vancomycin in patients with fever and neutropenia, as the uncontrolled use of vancomycin has facilitated the dissemination of vancomycin-resistant organisms, especially enterococci.393,394 The clinical concern is that a portion of infections caused by gram-positive pathogens can be fulminant and lead to rapid death in patients who are not treated promptly with appropriate antibiotics. However, a large, prospective, randomized trial from the European Organization for Research and Treatment of Cancer (EORTC) failed to show true clinical advantages for empiric vancomycin in adults.395 This study reported that empiric vancomycin decreased the number of days the patients had fever but did not improve survival. The study also showed that empiric vancomycin was associated with an increased incidence of nephrotoxicity and hepatotoxicity.395 A prospective randomized trial of fever and neutropenia in children has reported benefit for empiric vancomycin;396 however, another randomized study in children failed to show a benefit for the addition of vancomycin.397

In addition to the occurrence of VRE, there are other vancomycin-resistant pathogens of note. Reports of vancomycin-resistant and vancomycin-intermediate sensitive S aureus are currently rare but are of key concern, and they underscore the need for judicious vancomycin use.398,399 The increase in vancomycin resistance has been associated with use of vancomycin among hospitalized patients. The NCCN Guidelines Panel advises practitioners to adopt the recommendation of the Hospital Infection Control Practices Advisory Committee (HICPAC) of the CDC for preventing the spread of vancomycin resistance.400,401 Because of the increased risk for vancomycin-resistant organisms, empiric vancomycin use should be considered only in patients at high risk for serious gram-positive infection, and should not be considered as a routine component of initial therapy for fever and neutropenia. Vancomycin should be considered in the following clinical situations:

- Clinically apparent, serious IV catheter-related infection (to cover coagulase-negative staphylococcal isolates, which are usually beta-lactam antibiotic-resistant and MRSA);402,403
- Blood cultures positive for gram-positive bacteria before final identification and susceptibility testing;
- Known colonization with penicillin/cephalosporin–resistant pneumococci or MRSA;
- Clinical instability (eg, hypotension or shock), pending the results of cultures;404,405
Prevention and Treatment of Cancer-Related Infections

- Soft tissue infection (particularly in regions where MRSA infection is common).406

If empiric vancomycin (or other agents for gram-positive resistant infection) is initiated in any of these situations, its use should be reassessed within 2 to 3 days of initiation. If a resistant gram-positive pathogen (eg, MRSA) is not identified, the panel recommends discontinuing the agent. Recent authoritative guidelines have been published on the dosing and therapeutic monitoring of vancomycin.407 For management of complicated cases of C difficile infections, oral vancomycin can be considered (see Site-Specific Evaluation and Treatment of Infections: Abdominal, Rectal, and Liver Infections: Clostridium difficile Colitis).

In patients with acute leukemia receiving mucotoxic regimens, prophylaxis with ciprofloxacin and TMP/SMX have been associated with an increased risk of viridans group streptococcal infections.81,408,409 The broad-spectrum, gram-negative bacillary coverage and limited gram-positive pathogen activity of these drugs likely predispose patients to GI colonization and subsequent infection with such organisms.410,411 An abstract has reported an increased risk of breakthrough viridans group streptococcal infection following prophylaxis with levofloxacin,412 which has increased activity against gram-positive bacteria compared to ciprofloxacin; however, this is a single report and more data will be necessary to fully evaluate the use of newer generation fluoroquinolones.

Although bloodstream infections by viridans group streptococci resistant to all beta-lactams are observed in patients with cancer, cefepime, imipenem/cilastatin, meropenem, and piperacillin-tazobactam have more reliable activity than ceftazidime against viridans group streptococci.413 Addition of vancomycin provided no benefit compared to placebo with regard to defervescence, episodes of gram-positive bacteremia, or use of empiric antifungal therapy in patients with hematologic malignancies with neutropenic fever of unknown etiology that persisted for 48 to 60 hours after initial empiric piperacillin-tazobactam.414,415 In patients with neutropenic fever and severe mucositis who are receiving imipenem/cilastatin, meropenem, or piperacillin/tazobactam (ie, antibiotics with activity against oral flora), it does not appear that the addition of vancomycin is advantageous. Thus, the NCCN Guidelines Panel strongly recommends that vancomycin should not be routinely added to an empiric regimen solely based on persistent neutropenic fever of unknown etiology.

Agents With Broad-Spectrum Activity Against Gram-Positive Pathogens

Decreased susceptibility to vancomycin is an increasing concern. If decreased susceptibility is found on minimum inhibitory concentration (MIC) assessment, other treatment options for resistant gram-positive infections should be considered. Linezolid, daptomycin, and quinupristin/dalfopristin are active against the majority of gram-positive organisms, including beta-lactam-resistant and vancomycin-resistant pathogens.416-420 Resistance of gram-positive organisms to linezolid is infrequent, but this agent should be administered with caution in patients with compromised bone marrow function because of the marrow toxicity associated with its long-term use. Thrombocytopenia is most common (0.3%–10%) and increases with the duration of linezolid treatment, typically with duration of treatment greater than 2 weeks. In neutropenic patients with cancer, myeloid recovery does not seem to be delayed with short courses of linezolid;421,422 however, experience with long durations of therapy (eg, more than 14 days) is limited in patients with cancer.

Vancomycin or linezolid should be used for the treatment of MRSA pneumonia in ventilated patients.423-426 The FDA issued an alert about...
linezolid indicating that it is not approved for treatment of catheter-related infections, catheter-site infections, or gram-negative infections.427 In an open-label randomized study, patients treated with linezolid had a higher chance of death compared with those receiving vancomycin, oxacillin, or dicloxacillin for intravascular catheter-related infections with: 1) gram-negative agents alone; 2) both gram-positive and gram-negative organisms; or 3) no infection. No mortality difference by treatment was found among those who had gram-positive infections alone.427

Daptomycin is effective against most gram-positive pathogens, but it should not be used for the treatment of pneumonia, because it is inactivated by pulmonary surfactant.428,429 Daptomycin is indicated for the treatment of complicated skin and skin structure infections caused by susceptible strains of certain gram-positive microorganisms.430-432 A pharmacokinetic study of daptomycin in febrile neutropenic patients with cancer showed that this agent was active and well tolerated in this population (N = 29) with a median time to defervescence of 3 days following the start of treatment.433 A randomized study showed similar efficacy of daptomycin compared with vancomycin or anti-staphylococcal beta-lactams as therapy for \textit{S aureus} bacteremia and endocarditis.434 In a prospective study in patients with cancer who were treated with daptomycin for gram-positive catheter-related bloodstream infections (N = 40), the rates of symptoms resolution at 48 hours (76\% vs. 53\%) and microbial eradication at 48 hours (78\% vs. 34\%) were higher with daptomycin compared with historical vancomycin treatment in matched-control patients.435 In addition, the overall response rate was higher with daptomycin (68\% vs. 32\%), and the incidence of nephrotoxicity was lower. The treatment groups were comparable with regards to the rate of neutropenia, complications, adverse events, length of hospital stay, and deaths.435

Quinupristin/dalfopristin is active against \textit{S aureus} (including MRSA) and \textit{Enterococcus faecium} (including vancomycin-resistant strains) but is inactive against \textit{Enterococcus faecalis}. Use of quinupristin/dalfopristin has been limited because of the high frequency of substantial musculoskeletal symptoms.436

Optimal therapy for VRE infections is not well defined. Linezolid, quinupristin/dalfopristin (active against \textit{E. faecium}, but not \textit{E. faecalis}), and daptomycin have been used with variable success in the treatment of patients with VRE bloodstream infections.422,436,437 Removal of an infected catheter should always be strongly considered. In the absence of more definitive data, therapy with one of these agents is advised for VRE bacteremia.

Telavancin, ceftaroline, oritavancin, and dalbavancin have been approved for the treatment of complicated skin and skin structure infections caused by gram-positive pathogens, including MRSA.438-441 Ceftaroline is also indicated for the treatment of community-acquired bacterial pneumonia caused by susceptible gram-negative and gram-positive (except for MRSA) pathogens; this agent is not active against \textit{Enterococcus faecalis}.439 There are no directive data on the use of these agents in the oncologic setting. Therefore, these agents are not currently recommended as first-line therapy.

The panel recommends that the use of linezolid, daptomycin, and quinupristin/dalfopristin be limited to specific situations involving infections caused by documented vancomycin-resistant organisms, or for patients in whom vancomycin is not an option. Although studies have been published in patients with neutropenia, the NCCN Guidelines Panel strongly recommends that these agents not be used as routine empiric therapy for neutropenic fever because of concerns about the emergence of resistance and toxicity.
Initial Empiric Therapy for Patients Who Are Clinically Unstable

Sepsis is suggested by signs of clinical instability including hypotension, tachypnea, new or worsening tachycardia, mental status changes, decreased urine output, and organ dysfunction. Initial therapy for sepsis should broadly cover pathogens that are likely to cause sepsis while minimizing the potential for inadequate treatment. Unlike the stable patient with neutropenic fever, modifying antibiotics based on culture data may not be possible for the patient with sepsis if the initial regimen does not provide adequate coverage. The antibiotic regimen should be modified, if necessary, after culture results and susceptibility are known.

The initial empiric regimen for the neutropenic patient with clinical instability may include a broad-spectrum beta-lactam (eg, imipenem/cilastatin, meropenem, piperacillin-tazobactam) plus an aminoglycoside and vancomycin. Addition of fluconazole or an echinocandin should be strongly considered in patients not receiving antifungal prophylaxis. Local susceptibility patterns and recent antibiotic use should be taken into account when devising the antibiotic regimen. In hospitals where infections by antibiotic-resistant bacteria (eg, MRSA or drug-resistant gram-negative rods) are commonly observed, policies on initial empiric therapy of neutropenic fever may need to be tailored accordingly. Some experts also suggest that patients who have a history of *P. aeruginosa* colonization or of invasive disease should receive combination therapy with an antipseudomonal beta-lactam plus an aminoglycoside or ciprofloxacin.

For cases of septic shock, rapid interventions are needed. Fluid resuscitation, oxygen, invasive hemodynamic monitoring, and vasopressor agents may be required. Stress doses of hydrocortisone (IV 50 mg every 6 hours with or without fluudrocortisone oral 50 mcg daily) have been associated with decreased mortality in patients with septic shock and with insufficient adrenal reserve. Stress-dose corticosteroids are recommended for patients with septic shock who require vasopressor support. High-dose corticosteroids have not shown any benefit in the setting of septic shock or severe sepsis, and may be associated with increased risks for secondary infections.

Outpatient Management of Patients With Neutropenic Fever

Initial Evaluation of Risk

Patients with neutropenia may be categorized into either a high- or low-risk group using criteria derived either from validated clinical prediction rules based on risk models or from clinical trial eligibility criteria. Risk assessment attempts to predict the probability that a neutropenic patient will experience serious complications during a febrile episode. This assessment helps to determine whether a patient at low risk for serious complications could safely receive treatment outside of the hospital and which initial empiric therapy with oral antibiotics is appropriate.

Prospective trials have indicated that febrile neutropenic patients can be initially evaluated in the hospital, ambulatory clinic, or home and then treated effectively with broad-spectrum IV therapy, sequential IV then oral therapy, or oral therapy. Only centers with the necessary infrastructure should treat low-risk patients in an outpatient setting, preferably in an investigational context.

Risk assessment should be performed as part of the initial evaluation (see Initial Risk Assessment for Febrile Neutropenic Patients in the algorithm). A widely used and recently validated prediction rule to assess risk was developed by the Multinational Association of Supportive Care in Cancer (MASCC). The MASCC risk index is derived from a model that includes weighted scores based on burden of illness (eg, extent of febrile neutropenia), evidence of clinical instability or
comorbid conditions (eg, hypotension, chronic obstructive pulmonary disease, dehydration), history of prior fungal infections, site of medical care (eg, inpatient, outpatient), and age (cut off of 60 years); patients with MASCC risk index scores less than 21 are considered at high risk for developing infectious complications (see Risk Assessment Resources in the algorithm). It is also acceptable to employ risk assessment criteria that have been identified in large clinical trials to distinguish between patients at low and high risk for complications during the course of neutropenia.

The MASCC prediction rule does not consider the duration of neutropenia to be a deciding factor that influences the clinical course of treatment; however, the panel acknowledges that the duration of anticipated neutropenia may be helpful in risk assessment. A patient with severe neutropenia (ANC ≤100 neutrophils/mcL) anticipated to last greater than or equal to 7 days may be considered at high risk, regardless of the MASCC risk index score or other risk factors listed in the Guidelines. This recommendation is also in agreement with those of the current IDSA guidelines on the management of neutropenic patients with cancer.

Duration of Neutropenia and Risk

For decades, clinicians have regarded depth and duration of neutropenia as critical determinants of a patient’s risk for infection. Once the relationship between the ANC and incidence of infections was demonstrated, the importance of increased neutrophil counts for improved outcomes was evident. In the original study by Bodey et al, the fatality rate was highest (80%) among patients with initial neutrophil counts less than 100 cells/mcL that did not change during the first week of infection compared to the lower rate (27%) seen in patients with initial neutrophil counts less than 1000 cells/mcL that rose to greater than 1000 cells/mcL with treatment. Subsequently, clinical trials have reported that response rates to antibiotic regimens are highly influenced by trends in the neutrophil count during febrile episodes. In one study, the overall response rate was 73% when the initial neutrophil count increased compared to 43% when it decreased or remained unchanged (P < .0001). The response rate in patients who recovered from neutropenia was 67%, compared to only 32% in patients who remained severely neutropenic (P < .0001).

In 1988, Rubin et al examined the influence of the duration of neutropenia on the response to empiric antimicrobial therapy in patients with fever of undetermined origin. Patients with fewer than 7 days of neutropenia had a 95% response rate to initial antimicrobial therapy, compared to a 32% response rate in patients with more than 14 days of neutropenia (P < .001); however, intermediate durations between 7 and 14 days had response rates of 79%.

Bone marrow recovery is an important factor that influences outcome during the febrile neutropenic episode. Delayed bone marrow recovery might be anticipated in certain patient subsets (eg, patients who have received multiple cycles of myelosuppressive chemotherapy, HCT recipients, patients with known bone marrow metastases, patients who have received radiation therapy to the pelvis, spine, or long bones). Most patients with solid tumors have neutropenia lasting less than 7 days and are generally lower risk. Several studies have demonstrated the ability of clinicians to predict a patient’s anticipated duration of neutropenia. In prospective studies of patients identified as low risk for morbidity and mortality from febrile neutropenia, the expected duration of neutropenia was used as an eligibility criterion. Clinicians were correctly able to identify patients with an expected short duration of neutropenia (ie, fewer than 7–10 days) in more than 80% of the cases, indicating that the duration of neutropenia can be one of
several factors in selecting patients for outpatient management of neutropenic fever.

Evaluation of Patients for Outpatient Therapy for Neutropenic Fever

Outpatient therapy has become a common practice in low-risk patients with neutropenic fever. Several single-center clinical trials generally support the shift in care for low-risk patients to the outpatient setting; the hospital is not necessarily a safer place for low-risk patients, given the documented hazards of hospitalization. However, not all centers are equipped to manage outpatient treatment, and some patients with fever are not appropriate candidates. Early success with this type of therapy has been predicated on the ability to accurately determine an individual patient’s risk of developing complications associated with infection and on the presence of an adequate infrastructure for treatment and monitoring.

Once a level of risk has been identified, it can then be used to determine the appropriate site of care and route of broad-spectrum antibiotics administration. The panel recommends that all high-risk patients receive hospital care with broad-spectrum IV therapy (see Initial Risk Assessment for Febrile Neutropenic Patients in the algorithm). Low-risk patients may be treated in the hospital with oral or IV antibiotics, in an ambulatory clinic, or at home if adequate follow-up care can be provided (ie, 24 hours per day, 7 days per week). Outpatient therapy should be considered only for low-risk patients who consent to home care, have a telephone, have access to emergency facilities, have an adequate and supportive home environment, and are within 1-hour travel time of a medical center or physician’s office. Outpatient therapy requires a period of early assessment and an observation period of 2 to 12 hours (category 2B) (see Outpatient Therapy for Low-Risk Patients in the algorithm). The assessment requires a careful examination, review of laboratory results, review of social criteria for home therapy (as described above), and assessment of whether oral antibiotics are feasible. The observation period is used to confirm that the patient is at low risk and to ensure the clinical stability of the patient; to administer the first dose of antibiotics and monitor for any reactions; to organize discharge plans for home and follow-up care; and to provide patient education. A telephone follow-up should be performed within 12 to 24 hours. This assessment and observation can be performed during a short hospital stay or in an ambulatory facility or office staffed with qualified health care professionals. Providers who perform the early assessment and follow-up should be well trained (eg, a physician, nurse, physician assistant, and/or nurse practitioner) and should have experience and expertise in managing patients with fever and neutropenia.

Outpatient Regimens

Outpatient antimicrobial treatment may consist of broad-spectrum IV antibiotics given at home or in the clinic, or an oral regimen for carefully selected patients. For selected low-risk patients, the combination of ciprofloxacin with amoxicillin/clavulanate is considered the oral regimen of choice based on well-designed randomized trials (category 1) (see Outpatient Therapy for Low-Risk Patients in the algorithm). Although some of these trials were performed in an inpatient setting, they demonstrate the efficacy of the oral combination compared with standard IV therapy in the low-risk population. Ciprofloxacin plus clindamycin is an acceptable alternative for penicillin-allergic patients. However, ciprofloxacin monotherapy is not considered by the panel to be an adequate broad-spectrum agent because of the suboptimal coverage for gram-positive organisms and potential for serious breakthrough infections caused by viridans group streptococci. Nonetheless, several small studies have used high-dose oral ciprofloxacin alone in low-risk patients with fever and neutropenia.
Moxifloxacin (category 1) is a newer generation fluoroquinolone that was shown to be safe in low-risk patients with neutropenic fever. In a recent double-blind, randomized trial, single-daily moxifloxacin was compared with twice-daily ciprofloxacin plus amoxicillin/clavulanic acid in the treatment of low-risk febrile neutropenic patients with cancer. Low risk was defined as an MASCC score greater than 20 that is equivalent to a less than 10% complication rate. Of the 333 patients treated on this trial, 169 were given moxifloxacin, and 169 patients were treated with the ciprofloxacin combination. Therapy success was observed in 80% of patients treated with moxifloxacin compared with 82% of patients given ciprofloxacin combination therapy (95% CI, -10%–8%, P = NS). Despite similar therapy success rates, the reasons for failure of the treatment differed between the two groups. Moxifloxacin-treated patients had greater microbial complications including persistent or breakthrough resistance, while patients given the ciprofloxacin combination had mostly drug intolerance or adverse events that resulted in treatment failure. Rates of patients treated with moxifloxacin compared to ciprofloxacin combination with serious adverse events (6% vs. 8%, P = .23) or any adverse event (44% vs. 52%; P = .13) were similar. Moxifloxacin has a longer half-life, which allows for once-daily dosing. It is more active against gram-negative bacteria but has limited activity against \(P \text{ aeruginosa} \) compared to ciprofloxacin. Therefore, both of these treatments are recommended for low-risk patients with febrile neutropenia, but the choice of regimen may be influenced by local resistance and infection patterns.

Two other fluoroquinolones, levofloxacin and ofloxacin, have been tested for the treatment of low-risk patients with febrile neutropenia. Levofloxacin is a category 2A recommendation following studies demonstrating safety and efficacy (see Antibacterial Prophylaxis). Data from a 2008 self-administered survey indicated that 50% of oncologists were using levofloxacin as empiric therapy for low-risk patients with febrile neutropenia. Ofloxacin was safe in low-risk patients with neutropenic fever in a randomized trial, though an early death in a non-hospitalized patient in this trial underscores the need for close monitoring. Ofloxacin is not currently recommended.

NCCN Recommendations for Outpatient Therapy

The panel feels that outpatient therapy with a fluoroquinolone should be based on reliable gram-negative bacillary activity of the antibiotic that includes \(P \text{ aeruginosa} \) and local antibacterial susceptibilities. Ciprofloxacin plus amoxicillin/clavulanate (or ciprofloxacin plus clindamycin in penicillin-allergic patients) is the standard oral outpatient antibiotic regimen for low-risk patients with neutropenic fever. There is also evidence supporting quinolone monotherapy in this setting. Moxifloxacin (category 1) and levofloxacin (category 2A) are recommended quinolone monotherapies. These recommendations for quinolone-based outpatient regimens for neutropenic fever only apply to low-risk patients who have not received a quinolone as prophylaxis. Additionally, in order for a low-risk patient to receive oral antibiotics, the patient should not present with nausea or vomiting, and must be able to tolerate oral medications (see Outpatient Therapy for Low-Risk Patients in the algorithm). Intravenous therapy may also be used for outpatient treatment of low-risk patients with fever and neutropenia when treatment is given either in the home or day clinic setting (see Outpatient Therapy for Low-Risk Patients in the algorithm). Several IV outpatient regimens for low-risk patients have been studied in nonrandomized or small open trials, including IV ceftazidime, imipenem/cilastatin, and aztreonam plus clindamycin.

Once-daily ceftriaxone has been used for empiric antibiotic therapy in a few noncomparative studies in centers where \(P \text{ pseudomonas} \) is not a common pathogen. However, most \(P \text{ aeruginosa} \) isolates are
resistant to ceftriaxone. Although ceftriaxone combined with a once-daily aminoglycoside is a convenient regimen for outpatient IV administration, an aminoglycoside without an antipseudomonal beta-lactam may not be effective against *P. aeruginosa*, which remains an infrequent but potentially lethal pathogen. Therefore, the panel cannot recommend ceftriaxone (with or without an aminoglycoside) as empiric therapy for neutropenic fever. If this regimen is used, it should be restricted to low-risk patients at centers where *P. aeruginosa* infection is uncommon. In addition to the antimicrobial spectrum, other factors to consider in the choice of an outpatient regimen include stability of the reconstituted drugs, ability to manage IV infusions, and VADs.

Follow-Up of Outpatients With Fever and Neutropenia

Follow-up management can be performed at the patient’s home or in the physician’s office or clinic. The panel recommends that patients be assessed daily while febrile, although some experts feel that less frequent follow-up may be appropriate after fever defervescence (see *Outpatient Therapy for Low-Risk Patients* in the algorithm). For the first 72 hours after initiation of empiric therapy, the patient should be assessed daily at home or at the clinic for treatment response, signs of toxicity, and treatment compliance. If the disease is responding to the treatment regimen, then daily follow-up by telephone is sufficient. A return to the clinic is recommended for any positive culture, for persistent or recurrent fever at 3 to 5 days, if serious subsequent infections or adverse events develop, if the patient is unable to continue the prescribed antibiotic regimen (eg, intolerance to the oral regimen), or for infusion of IV antibiotics.

Empiric Antifungal Therapy in Persistent Neutropenic Fever

Empiric antifungal therapy for persistent febrile neutropenia unresponsive to broad-spectrum antibacterial agents is initiated in neutropenic patients known to be at risk for invasive fungal infections, but who do not have early detection of those infections following clinical examination and collection of cultures. Traditionally, empiric antifungal therapy is initiated after 4 or more days of empiric antibiotic therapy for fever and neutropenia, in patients who have remained febrile or who have recrudescence fever (see *Principles of Daily Follow-up* in the algorithm). The timing to add empiric antifungal therapy varies with the risk of invasive mold infections, but generally ranges between 7 to 10 days of neutropenic fever despite empiric antibiotic therapy. In patients at high risk for mold infections (eg, neutropenia lasting >10 days, allogeneic HCT recipients, treatment with high-dose corticosteroids), the NCCN Guidelines Panel recommends adding empiric antifungal agents after 4 days unless the patient is receiving prophylaxis with mold-active agents. The concept of using empiric antifungal therapy was established in the 1970s and 1980s when about 20% of patients being treated for acute leukemia or undergoing HCT would develop an invasive fungal infection due to *Candida* or *Aspergillus* species by day 20 of neutropenia.

The toxicity of amphotericin B limited its use as routine prophylaxis, which would entail exposing more patients to a toxic drug over a prolonged period compared with empiric therapy. With the widespread use of fluconazole prophylaxis in the 1990s among high-risk patients with acute leukemia and in HCT recipients, the incidence of invasive candidiasis in these patients decreased substantially, although breakthrough candidemia by fluconazole-resistant strains occurred. Empiric antifungal therapy for neutropenic fever principally involved switching from fluconazole to amphotericin B to broaden the antifungal spectrum to include molds such as *Aspergillus*. Subsequently, liposomal amphotericin B (L-AMB) proved to be safer than and as effective as conventional amphotericin B for empiric antifungal therapy.
Amphotericin B products are considered a category 2B recommendation for prophylaxis and empiric antifungal therapy for persistent or recurrent neutropenic fever of unknown etiology based on their toxicity and the availability of safer and equally effective alternative agents. In cases where there is a stronger clinical suspicion of mold infection than neutropenic fever alone (e.g., a new pulmonary nodule in a patient with fever and prolonged neutropenia), then use of an amphotericin B formulation (or a mold-active azole or an echinocandin) should be considered pending additional diagnostic evaluation. In general, lipid formulations of amphotericin B are preferred over the conventional formulation, because they are less toxic. This recommendation is stronger in patients with risk factors for acute renal failure, such as pre-existing renal disease, HCT recipients, and coadministration of nephrotoxic agents.

Fluconazole has been used successfully as empiric therapy for neutropenic fever in patients not receiving prophylaxis but is limited by lack of activity against molds. Intravenous followed by oral itraconazole solution was as effective as, but less toxic than, conventional amphotericin B when used as empiric therapy in an open, randomized study; these results led to FDA approval of oral itraconazole solution for this indication. Itraconazole in the capsule formulation has erratic oral bioavailability and is therefore not suitable as empiric antifungal therapy. Itraconazole has negative inotropic effects and is contraindicated in patients with evidence of ventricular dysfunction or a history of congestive heart failure.

Voriconazole was compared with L-AMB in an open, randomized study of empiric antifungal therapy (N = 837 patients, 72% with hematologic malignancies). The overall success rates for preventing invasive fungal infections were 26% with voriconazole and 31% with L-AMB. Empiric voriconazole was associated with fewer breakthrough fungal infections (1.9% vs. 5.0%, P = .02), with the greatest protective benefit occurring in pre-specified high-risk patients (relapsed acute leukemia and allogeneic HCT). Because the noninferiority of voriconazole versus L-AMB was not demonstrated in this study based on prespecified criteria, voriconazole did not receive FDA approval for use as empiric therapy. Voriconazole is an option (category 2B) for empiric therapy in patients at high risk for invasive mold infection.

Echinocandins are active against Candida and Aspergillus species but have unreliable activity against most other opportunistic fungi. Caspofungin was compared with L-AMB as empiric therapy for fungal infections in a randomized double-blind study in patients with persistent fever and neutropenia (N = 1095). The overall success rates were 34% in both caspofungin and L-AMB recipients. The proportion of patients who survived at least 7 days after therapy was greater in the caspofungin group (92.6% vs. 89.2%, P = .05). The rates of breakthrough fungal infections and resolution of fever during neutropenia were similar between the 2 groups. Among patients with a baseline invasive fungal infection, the success rate was higher with caspofungin versus L-AMB (52% vs. 26%, P = .04) and the mortality rate was lower with caspofungin (11% vs. 44% with L-AMB). Drug-related toxicities and premature withdrawals because of drug-related adverse events were significantly lower in caspofungin recipients. This study supports caspofungin as an option for empiric antifungal therapy. Caspofungin is approved for use as empiric treatment of presumed fungal infection in patients with fever and neutropenia. The other echinocandins, anidulafungin and micafungin, have not been studied specifically for empiric antifungal therapy; however, some panel members would consider them to likely be effective, based on the data for caspofungin.
Posaconazole and isavuconazole can be considered for patients who have invasive, refractory infections or who have intolerance to amphotericin B formulations. Neither agent is approved by the FDA as either primary or invasive refractory therapy for invasive fungal infections.

It is unclear whether patients who are already receiving mold-active prophylaxis should subsequently receive empiric antifungal therapy with an additional or different antifungal solely based on persistent neutropenic fever. One approach has been to evaluate such patients with a high-resolution CT scan of the chest, in search of lesions suspicious for invasive fungal disease. CT scanning in this setting has not been validated but it is a reasonable approach, in concert with careful physical examination and blood cultures, in an effort to identify a source of persistent unexplained fever in patients with neutropenia. Laboratory markers (such as serum galactomannan and beta-glucan) have important limitations, including false-negative results in some patients already receiving prophylactic or empiric antifungals. A meta-analysis showed the sensitivity of the galactomannan test for proven aspergillosis to be only 70% among patients with hematologic malignancies and 82% among HCT recipients. However, these antigen-based assays have a high negative predictive value in the absence of mold-active antifungal therapy.

In patients undergoing chemotherapy for acute leukemias and receiving only yeast-active prophylaxis with fluconazole, 3% to 4% developed invasive fungal infections despite prophylaxis. Empiric antifungal therapy with anti-mold activity would be expected to benefit these few patients without incurring a greater risk of toxicity.

Preemptive antifungal therapy uses characteristic changes in chest or sinus CT scans, laboratory markers, or both to trigger modification of the antifungal regimen, rather than providing empiric antifungals to all persistently febrile neutropenic patients. Maertens and colleagues evaluated a preemptive strategy of incorporating L-AMB in high-risk neutropenic patients (who received fluconazole prophylaxis) based on such pre-specified triggers, including serially positive serum galactomannan tests, a bronchoalveolar lavage (BAL) showing mold, and/or suggestive chest CT in patients with persistent fever or with signs of invasive fungal infection. A total of 136 treatment episodes (among 88 patients) were evaluated. Among these, neutropenic fever developed in 117 cases, of which 35% would have met the existing criteria for empiric antifungal therapy. Using the preemptive strategy, antifungal therapy was given in 7.7% (9 of 117 episodes of neutropenic fever) of patients rather than up to one third of patients that might have received it on the basis of fever alone. In addition, seropositivity for galactomannan led to early initiation of antifungal therapy in 10 non-febrile episodes. This approach detected all cases of invasive aspergillosis but missed 1 case of invasive fungal infection that involved disseminated zygomycosis resulting in death. Two cases of breakthrough candidemia were detected by conventional culture methods and successfully treated. In a randomized trial of patients with neutropenic fever, a preemptive strategy was associated with an increased incidence of probable or proven invasive fungal infections (9% vs. 3% in empirically treated group; \(P < .05 \)), although without an increase in overall mortality and ultimately with a decreased cost of antifungal drugs compared to empiric therapy. Taken together, the panel considers the evidence supporting preemptive antifungal therapy to be too preliminary to support its routine use.

Follow-up of Patients With Neutropenic Fever

Daily evaluation by a health care professional who is experienced in treating patients with fever and neutropenia is essential. The daily
examination should focus on a site-specific assessment, and an infectious disease consultation should be considered for all complicated cases or progressive infections (see Principles of Daily Follow-up in the algorithm). Daily follow-up should include an evaluation of response to empiric antimicrobial therapy, both in terms of fever trends and changes in signs and/or symptoms of infections. Time to defervescence ranges from 2 to 7 days (median, 5 days) for febrile patients with cancer with neutropenia who receive appropriate initial antibiotic therapy. This rate of fever response should be considered when assessing the need to adjust initial antibiotics; random additions or changes for persistent fever are discouraged in the absence of clinical or microbiologic evidence. The expected slow defervescence of fever also complicates decisions regarding the need for repeat blood cultures. Although some experts recommend daily blood cultures until the patient becomes afebrile, increasing evidence suggests that daily blood cultures are unnecessary in stable neutropenic patients with persistent fever of unknown etiology.

As part of follow-up, patients should also be evaluated for potential drug toxicities by liver and kidney function tests (generally conducted at least twice weekly).

Current bacterial blood culture systems (such as the BACTEC™ continuous-monitoring culture system) can detect 90% to 100% of bacterial bloodstream pathogens within 48 hours of culture. For this reason, routine ordering of additional cultures before obtaining the results from the initial series is discouraged. Daily review of previously obtained cultures is critical, and the panel recommends documenting the clearance of bloodstream bacterial or fungal infections with repeat blood cultures. The overall response to initial empiric antimicrobial therapy should be evaluated 3 to 5 days from initiation of empiric therapy.

Follow-up Therapy in Responding, Clinically Stable Patients

Patients who have infections that respond to empiric therapy should exhibit decreasing fever trends, should show stable or improving signs and symptoms of infection, and should be hemodynamically stable. For these patients, no change is needed to the initial empiric regimen, and if patients were started appropriately on an agent for Gram-positive resistant infections, they should continue with the course of therapy. If patients received an agent for Gram-positive resistant infections as part of their initial empiric therapy, but they do not have a pathogen recovered or a site of infection identified justifying such treatment, then treatment should be discontinued. It is generally recommended that antibiotics be continued until the ANC is 500 cells/mcL or greater, and is increasing (see Principles of Daily Follow-up in the algorithm). Patients with fever of unknown origin who become afebrile soon after starting empiric therapy may have empiric antibiotics discontinued with ANC recovery (ANC ≥ 500 neutrophils/mcL) as long as the neutrophil count is likely to continue to increase (patients are often receiving a growth factor). This recommendation assumes that the patient is clinically well and afebrile for at least 24 hours before antibiotic discontinuation. Patients who become afebrile but remain persistently neutropenic (ANC <500 neutrophils/mcL) should receive a more prolonged course of antibiotic therapy until the neutropenia resolves (see Principles of Daily Follow-up in the algorithm). Lower risk patients can also be switched to oral antibiotics until their neutropenia resolves (eg, 500 mg ciprofloxacin every 8 hours plus 500 mg of amoxicillin/potassium clavulanate every 8 hours). For patients who have defervesced but remain neutropenic, de-escalation to prophylactic antibiotics should be considered.

Duration of Therapy for Patients With Documented Infections

The duration of antimicrobial therapy, in general, is dictated by the 1) underlying site of infection; 2) causative organism(s); and 3) patient’s clinical condition, response to treatment, and neutrophil recovery. Most
experts recommend continuing antimicrobial therapy for documented infections at least until the ANC recovers to 500 neutrophils/mcL or greater, but also recommend using a defined course of therapy appropriate for the specific infection. Thus, the duration of antimicrobial therapy may be longer than the duration of neutropenia in these patients (see Follow-up Therapy for Responding Patients in the algorithm). For example, most uncomplicated skin and soft tissue infections can be treated with 7 to 14 days of therapy. For most uncomplicated bacterial bloodstream infections, 7 to 14 days of therapy is usually adequate, with longer durations (10–14 days) recommended for gram-negative bacteremias. For all S aureus bloodstream infections, treatment should be continued for at least 4 weeks after documentation of a first negative blood culture. In cases of endovascular involvement, treatment may need to be prolonged. Treatment for bloodstream infections caused by yeast should be continued for at least two weeks after the first negative blood culture is obtained. Catheter removal is recommended for septic phlebitis, tunnel infection, or port pocket infection and if bloodstream infection is caused by Candida, S. aureus, Pseudomonas aeruginosa, Corynebacterium jeikeium, Acinetobacter, Bacillus organisms, atypical mycobacteria, yeasts, molds, VRE, and Stenotrophomonas maltophilia. A duration of treatment lasting 7 to 14 days is usually indicated for infections of the lungs (eg, bacterial pneumonia) or sinuses. Complex intra-abdominal infections, such as typhilitis, should be treated until all evidence of infection has resolved, and the patient has recovered from neutropenia. For fungal infections with Candida, treatment should be continued for at least 2 weeks after documentation of a first negative blood culture. Invasive mold infections (eg, aspergillosis) generally require treatment for a minimum of 12 weeks.

The duration of treatment for HSV (uncomplicated, localized disease to the skin) and VZV (uncomplicated, localized disease to a single dermatome) infections is typically 7 to 10 days. Life-threatening infections, such as invasive fungi or CMV, require individualized courses of therapy that are often prolonged. The duration of anti-infective therapy may need to be extended if further chemotherapy is required while treating a significant infection. This may occur with infections that complicate leukemia or lymphoma treatments in which multiple cycles of intensive chemotherapy are required.

In patients with influenza, oseltamivir is approved for a duration of 5 days in ambulatory patients who are otherwise healthy individuals with intact immune systems. A longer course of treatment (eg, at least 10 days) that continues until resolution of symptoms should be considered in the highly immunocompromised.

Patients with documented infections who become afebrile after the initiation of the empiric antibiotic regimen and who are at low risk for complications associated with infection may be candidates for outpatient antibiotic therapy. The regimen, whether oral or IV, should be appropriate for neutropenic fever and have activity against the specific infection.
changes in antimicrobial therapy. The exception is the initiation of empiric antifungal therapy in patients who have persistent or recurrent fever after 4 to 7 days of empiric antibacterial therapy and who are not receiving mold-active prophylaxis (see Principles of Daily Follow-up in the algorithm). Documented infections are usually treated according to the site, pathogen, and at least until ANC recovery (see Site-Specific Evaluation and Treatment of Infections).

Follow-up Therapy in Non-responding, Clinically Unstable Patients

Although fever resolution may be slow during neutropenia, persistent fever may result from a noninfectious etiology, such as drug-induced fever. Persistent fever may also represent an inadequately treated infectious process, such as a nonbacterial infection (fungal or viral), a bacterial infection that is resistant to empiric antibiotics, a venous access or closed space infection, or inadequate antimicrobial serum levels. It is important to recognize that documented deep tissue infections may take longer than fever of unknown etiology to respond to antimicrobial therapy. In these cases, daily assessment of clinical improvement or failure depends on radiographic, culture, and clinical examination data, and on the fever trends. Unusual infections (eg, toxoplasmosis) may complicate neutropenia, particularly if immunosuppressive agents (eg, high-dose corticosteroids) are also used. The panel strongly recommends an infectious disease consultation for these patients.

Patients who remain persistently or intermittently febrile, show no improvement in signs/symptoms of infections, have persistent positive blood cultures, and/or may be hemodynamically unstable, should be considered non-responsive to initial empiric antimicrobial therapy. These patients pose a serious management challenge and are at increased risk of infection-associated morbidity and mortality. For such patients, antimicrobial coverage should be broadened to include anaerobes, resistant gram-negative rods, and resistant gram-positive organisms, as clinically indicated. Coverage should also include *Candida*. In addition, the patient should be reevaluated with CT scans. Again, the panel strongly recommends that an infectious disease expert be consulted for all such patients (see Principles of Daily Follow-up in the algorithm). The lack of response may suggest an infection with a pathogen resistant to the antimicrobial therapy being used, inadequate serum or tissue levels of the antibiotic(s), infection at a vascular site (ie, catheter or “closed space” infection), or emergence of a second infection. Some documented infections fail to respond to appropriate therapy because of associated profound neutropenia. If possible, treatment should be optimized using broad-spectrum antibiotic combinations that minimize other organ toxicity.

Both the NCCN and the American Society of Clinical Oncology (ASCO) have guidelines for the use of prophylactic colony-stimulating factors (CSF) in neutropenic patients (see NCCN Guidelines for Myeloid Growth Factors). It is not clear whether these agents are useful as adjunctive therapy for established infectious events. Although the data supporting their use are limited, adjunctive therapy with granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF) should be considered (category 2B) in neutropenic patients with serious infectious complications such as pneumonia, invasive fungal infections, or any type of progressive infection.

Development of Clinical Instability While Receiving Antibacterial Therapy

It is essential to recognize the early signs of breakthrough infections after the initiation of antibacterial therapy. Although persistent neutropenic fever alone is not an indication to modify the antibacterial
regimen, signs of breakthrough infection should prompt additional evaluation and consideration of therapy modification.

New findings suggestive of sepsis (eg, hypotension, tachycardia, mental status changes, organ dysfunction) require the following: 1) repeat physical examination to identify the source of infection; 2) repeat blood cultures; 3) consideration of radiologic studies; and 4) empiric modification of antimicrobial therapy pending culture results. Information about previous use of antibiotics and local sensitivity patterns of gram-negative pathogens should guide empiric changes. Empiric addition of vancomycin is warranted in the unstable patient. In patients receiving ceftazidime, the possibility of breakthrough infections (either from extended spectrum beta-lactamase–producing or from cephalosporinase-producing gram-negative rods) should be considered and switching to imipenem/cilastatin or meropenem is appropriate pending culture results. Information about previous use of antibiotics and local sensitivity patterns of gram-negative pathogens should guide empiric changes.

Stenotrophomonas maltophilia or carbapenem-resistant P aeruginosa may cause breakthrough sepsis in patients receiving imipenem/cilastatin or meropenem; consider empiric modification to a regimen containing piperacillin-tazobactam, an aminoglycoside, and TMP/SMX. In patients not receiving a systemic antifungal agent, addition of fluconazole or an echinocandin should be strongly considered for possible candidemia. The antibiotic regimen should then be tailored based on culture and radiologic results.

Site-Specific Evaluation and Treatment of Infections

The NCCN Guidelines provide recommendations for site-specific evaluation and therapy for infections of the mouth and esophagus, sinuses, liver, abdomen, rectum, vascular access sites, lungs, skin/soft tissue, urinary tract, and CNS. This section is tailored to patients with neutropenia or those who are otherwise significantly immunocompromised (eg, HCT recipients).

Mouth and Esophageal Infections

The mouth and esophagus are common sites of infection in patients with fever and neutropenia. This site predilection occurs because of the propensity of the mouth and alimentary tract mucosa to be disrupted by cytotoxic therapy, which can cause mucositis. Unfortunately, the characteristics of this disruption are not etiology specific, and important viral and fungal pathogens are often only distinguished by microbiologic culture. Empiric antibiotic therapy must consider the endogenous anaerobic flora and the shift in oral flora, which occur with serious illness or antibiotic use. The increased frequency of HSV reactivation and severity of these infections in patients with cancer are well known and preventable. The incidence of HSV reactivation in immunocompromised patients may approach 50% to 75%, but it is nearly zero in those who receive prophylaxis with appropriate antiviral agents. HSV infections are associated with more extensive mucosal damage, increased secondary infections, and significantly prolonged healing time. Baglin et al reported that patients with fever and neutropenia who experienced concomitant HSV reactivation and were treated with appropriate antiviral therapy had a significant decrease in the number of days with fever. Ulcers of the oral mucosa may be due to HSV infections or fungal sources; a culture should be obtained to determine the pathogenic organism, and addition of antiviral or systemic antifungal therapy should be considered, pending results. Vesicular lesions are most often caused by herpes virus infections and should be treated with antivirals pending culture (or other diagnostic assays) results (see Initial Clinical Presentation: Mouth/Mucosal Membrane in the algorithm).

Systemic or topical antifungal agents can be used to treat thrush. Because of the risk of candidemia, systemic antifungal therapy is advised in neutropenic patients. Fluconazole is recommended as first-
line therapy for thrush (see Initial Clinical Presentation: Mouth/Mucosal Membrane in the algorithm). If patients do not respond, the dose of fluconazole can be increased up to 800 mg daily (in adults with normal renal function). Although cross-resistance among azoles may occur, oral voriconazole, or posaconazole are reasonable oral options for thrush that is refractory to fluconazole. Echinocandins can be used for patients with azole-refractory mucosal candidiasis. Though amphotericin B formulations are also effective, they are not recommended because of toxicity.

Thrush along with retrosternal burning, chronic nausea, or odynophagia should raise suspicion for Candida esophagitis. However, Candida esophagitis may occur in the absence of oral thrush, especially in patients receiving oral topical antifungal agents. Definitive diagnosis of esophageal candidiasis is made by endoscopy. Empiric systemic antifungal therapy is often used to treat presumed Candida esophagitis.

The presence of thrush favors esophageal candidiasis in patients with symptoms compatible with esophagitis, although the symptoms of HSV and Candida esophagitis are similar. Other causes of esophagitis (eg, radiation esophagitis, GVHD of the esophagus or stomach) also produce similar symptoms. A trial of fluconazole and/or acyclovir (5 mg/kg IV every 8 hours in patients with normal renal function) should be considered in neutropenic patients and other highly immunocompromised persons with symptoms that suggest esophagitis. CMV esophagitis is a rare complication of chemotherapy-induced neutropenia and is most commonly observed in allogeneic HCT recipients with GVHD. Negative CMV surveillance results from PCR studies would make CMV disease very unlikely. If CMV esophagitis is diagnosed, treatment with valganciclovir or ganciclovir should be initiated. Foscarnet or cidofovir should be reserved for ganciclovir-resistant CMV or for patients who cannot tolerate ganciclovir. Empiric treatment may be considered in patients at high risk for CMV disease with symptoms suggestive of esophagitis.

For patients with esophagitis who do not respond to empiric therapy with these agents, careful upper endoscopy with platelet support (if required) may be considered to obtain cultures. Tissue biopsies are the gold standard for the diagnosis of invasive esophageal infections. However, endoscopy and biopsy may be associated with complications in patients who are profoundly neutropenic and/or thrombocytopenic; therefore, the procedure should be performed with caution. Radiographic procedures, such as barium studies, lack sensitivity and add little clinically significant information and therefore are not recommended.

Sinus or Nasal Infections

The sinuses are a common site of bacterial infection. Patients with severe and prolonged neutropenia (eg, more than 10 days) and allogeneic HCT recipients with GVHD are particularly susceptible to invasive mold infections. Cytotoxic therapy disrupts the natural cleansing mechanisms in the nasal passages and increases colonization. A preceding chronic infection may also become active in the setting of neutropenia. Sinusitis during the early neutropenic period (less than 7 days) is principally caused by respiratory and gram-negative bacterial pathogens. In patients with longer duration neutropenia or in patients receiving concomitant high-dose corticosteroid therapy, invasive mold infections are an important concern.

Initial symptoms of sinusitis may be mild. A high-resolution CT scan of the sinuses is the radiographic procedure of choice to evaluate patients with pain or tenderness of the sinuses, nasal erosions, unilateral facial swelling, unilateral eye tearing, or epistaxis. An MRI that includes...
evaluation of the orbital and cavernous sinuses is useful to evaluate proptosis of the eye or cranial nerve abnormalities (see Initial Clinical Presentation: Sinus/Nasal in the algorithm). Bony erosion on CT scan suggests invasive fungal disease. Ear, nose, and throat (ENT) and ophthalmologic examinations should be performed for symptomatic patients with abnormalities on CT scans, with biopsy and culture of any abnormal tissues. Broad spectrum coverage for aerobes and anaerobes is appropriate for neutropenic and otherwise highly immunocompromised patients with sinus infections. Vancomycin (or another gram-positive active agent) should be added for periorbital cellulitis, which is frequently caused by S. aureus.

Sinus endoscopy with biopsy and culture are often required to definitively establish the diagnosis and should be pursued aggressively in patients at high risk for mold infection. Invasive fungal sinusitis in patients with hematologic malignancies and with prolonged neutropenia is principally caused by Aspergillus species (A. flavus and A. fumigatus) and Zygomycetes. In a case-control study of invasive aspergillosis and zygomycosis in patients with either acute leukemia or who were allogeneic HCT recipients, the risk factors that favored the diagnosis of zygomycosis included fungal sinusitis and use of voriconazole. A lipid formulation of amphotericin B should be used for suspected or confirmed invasive sinus mold infection, pending definitive histology and culture results. Posaconazole or isavuconazole can be considered as treatment of refractory infection or if there is intolerance to amphotericin B formulations; however, neither is approved by the FDA for the treatment of refractory invasive fungal infections. Voriconazole (category 1) is the drug of choice for invasive aspergillosis. Urgent debridement of necrotic tissue should be performed, when feasible.

Abdominal, Rectal, and Liver Infections

Most infections in the abdomen, rectum, or liver are discovered because of a combination of clinical signs and symptoms (eg, abdominal pain, perirectal pain, diarrhea) and of biochemical abnormalities (eg, abnormal liver function tests). These infections are usually diagnosed and managed based on the radiologic, GI, and surgical expertise of the treating oncology center. Improved imaging techniques (including ultrasonography, CT scans, MRI, and radionuclide and endoscopic procedures) have decreased the need for surgical intervention. The choice of diagnostic studies should be based on the clinical presentation and relative clinical benefit.

Antimicrobial therapy for GI infections must take into account the high likelihood of polymicrobial pathogens and the presence of the endogenous anaerobic GI flora. Acceptable therapeutic options in this setting include monotherapy with a carbapenem (imipenem/cilastatin, meropenem, doripenem, or ertapenem), piperacillin/tazobactam, or pairing ceftriaxone with metronidazole. In neutropenic patients, the antibiotic regimen should have antipseudomonal activity. Percutaneous aspiration and drainage should be performed, if feasible, for suspicious infected collections. Cholangitis may complicate obstructive tumors or previous hepatobiliary surgery. If cholangitis is suspected (ie, patients have fever with or without abdominal tenderness and liver enzyme abnormalities compatible with obstruction), a CT scan should be performed to detect biliary tract dilatation and abscess or infected collections. An endoscopic cholangiogram is useful to document the level of obstruction; if present, endoscopic stent placement may resolve the obstruction, which is a key component in managing cholangitis.

The GI tract and central venous catheters are the principal portals of entry of systemic candidiasis. Candida species are frequently
components of the colonic flora in normal adults. Patients are susceptible to candidal bloodstream infection because of the mucosal damage induced with cytotoxic therapy and neutropenia. Breaches in the GI tract after anastomotic leaks also predispose patients to candidal peritonitis and bloodstream infections, and antifungal prophylaxis (eg, fluconazole) should be considered.

Clostridium difficile Colitis

Clostridium difficile colitis is principally a complication of antibiotic therapy and hospitalization, but it is also a complication of neutropenia, occurring in about 7% of patients. Diarrhea should be evaluated with at least 2 stool *C difficile* toxin screens. The rate and severity of *C difficile* colitis in the United States may be increasing, partly because of the emergence of a more virulent strain of *C difficile*. Multi-institutional outbreaks of *C difficile* colitis have been reported that were associated with high morbidity and mortality; these outbreaks were caused by a distinct strain with variations in toxin genes and with resistance to fluoroquinolones. Early reports suggested that metronidazole cured over 90% of cases of *C difficile* colitis, and the rate of recurrence was low. However, Musher et al reported that among patients (N = 207) treated with metronidazole for *C difficile* colitis, only 50% were cured and had no recurrence of disease.

A multicenter, double-blind, randomized trial was conducted to evaluate the efficacy and safety of oral fidaxomicin versus oral vancomycin in patients with *C difficile* infection (N = 629). The primary endpoint of this study was clinical cure, defined as the resolution of diarrhea and no further therapy necessary following completion of study treatment. The clinical cure rate with fidaxomicin was noninferior to vancomycin (88.2% vs. 85.8%) in the modified intent-to-treat analysis. The frequency and severity of adverse events were similar between treatment arms. In addition, fidaxomicin was associated with a significantly decreased recurrence rate compared with vancomycin (15.4% vs. 25.3%; *P* = .005) and a significantly higher rate of resolution of diarrhea without recurrence (74.6% vs. 64.1%; *P* = .006). A decrease in recurrence of *C difficile* diarrhea was not observed in the treatment of the current epidemic strain, NAP1/BI/027. The investigators postulate that the improved duration of infection resolution with fidaxomicin may be due to its preservation of normal intestinal anaerobic flora, which may help to prevent the reemergence of *C difficile*.514

Another multicenter, double-blind randomized trial evaluated the efficacy and safety of oral fidaxomicin versus oral vancomycin in adult patients with acute *C difficile* infection (N = 535; n = 509 evaluable). The primary end point of this study was clinical cure; fidaxomicin was noninferior to vancomycin (87.7% vs. 86.8%) in the modified intent-to-treat analysis. Interestingly, among the subgroup of patients receiving concomitant antibiotics for other infections (n = 96), treatment with fidaxomicin resulted in a higher cure rate compared with vancomycin (90.2% vs. 73.3%; *P* = .031). The incidence of treatment-emergent adverse events was similar between treatment arms.

Both of these large randomized controlled studies showed that treatment of *C difficile* infection with fidaxomicin was noninferior to vancomycin. A subgroup analysis combining data from the two randomized studies was conducted to evaluate the efficacy of these agents in patients with a cancer diagnosis who had *C difficile* infection (n = 183). Overall, the cure rate was significantly lower among the patients with cancer compared with patients without cancer in these trials (n = 922; 79.2% vs. 88.6%; *P* < .001). In addition, the median time to resolution of diarrhea was delayed among patients with cancer (100 hours vs. 55 hours; *P* < .001). An analysis by treatment regimen showed that among the subgroup of patients with cancer (n = 183), those treated with fidaxomicin had a more rapid median time to
resolution of diarrhea compared with patients treated with vancomycin (74 hours vs. 123 hours; \(P = .045 \)).\(^{516}\) Subtotal colectomy, diverting ileostomy, or colostomy may be required in cases involving toxic dilatation or perforation of the colon.

Multiple recurrences of \textit{C. difficile} are a challenge in the patient with cancer and may respond to a prolonged, tapered treatment with oral vancomycin dose over several weeks.\(^{517}\) The use of oral vancomycin followed by duodenal infusion of donor feces may be an effective strategy in patients with recurrent \textit{C. difficile} infection.\(^{518}\) In a recent randomized study, patients with recurrent \textit{C. difficile} infection were assigned to receive treatment with a short course of initial oral vancomycin (500 mg PO 4 times daily for 4 days) followed by bowel lavage and infusion of donor feces (\(n = 16 \)) or standard oral vancomycin (500 mg PO 4 times daily for 14 days) alone (\(n = 13 \)) or standard oral vancomycin with bowel lavage (\(n = 13 \)).\(^{518}\) The primary endpoint was resolution of \textit{C. difficile}-associated diarrhea without relapse for 10 weeks. Resolution was achieved in 81\% of patients in the donor feces infusion group compared with 31\% in the vancomycin alone group and 23\% in the group treated with vancomycin plus bowel lavage (\(P < .001 \) for both comparisons with the infusion group).\(^{518}\) However, data remain limited regarding the safety of fecal microbiota transplantation in this setting.

The NCCN panel recommends vancomycin (preferred), fidaxomicin, or metronidazole for the treatment of \textit{C. difficile} colitis. Oral vancomycin has a similar efficacy rate compared to oral metronidazole. More recently, it was recognized as an option for initial therapy for \textit{C. difficile} colitis despite the risk of selection for VRE and the substantial expense. Oral vancomycin should also be considered over metronidazole for more complicated cases, such as those associated with severe diarrhea, dehydration, clinical instability, significant comorbidities, or recurrent or refractory \textit{C. difficile} colitis. Efforts should be made to deliver vancomycin by the nasogastric route in patients with severe \textit{C. difficile} colitis.\(^{519,520}\) Limited data suggest that IV metronidazole may be useful in this setting, and it is best used as an adjunct to oral vancomycin.\(^{521,522}\) Intravenous vancomycin is not recommended in this setting because of inadequate luminal levels. IV metronidazole should be used in patients who cannot be treated with oral agents (see \textit{Initial Clinical Presentation: Additions to Initial Empiric Regimen} in the algorithm). Fidaxomicin is not generally used as first-line treatment of \textit{C. difficile}; however, it should be considered in certain circumstances, particularly for the treatment of recurrent infection.

Enterocolitis

Neutropenic enterocolitis is a serious, potentially life-threatening disease characterized by fever, diarrhea, and abdominal pain.\(^{523,524}\) When it occurs in the cecum, it is commonly referred to as typhlitis. The cecum is more vulnerable because of its size and shape, but any portion of the entire colon may be involved. This illness has frequently been associated with acute leukemia, neutropenia, and intensive cytotoxic therapy. CT scanning is the preferred diagnostic test and usually identifies any thickening of the bowel wall. The differential diagnosis for this syndrome includes \textit{C. difficile} colitis, CMV enteritis (most common in allogeneic HCT recipients), and GI tract GVHD. Bloodstream infections and sepsis (frequently polymicrobial), bowel perforation, and hemorrhage may occur. The natural history of typhlitis is quite variable, but all patients should be assessed for \textit{C. difficile} infection and should be treated with bowel rest and broad-spectrum antibiotics, including coverage for \textit{C. difficile}, aerobic pathogens, and anaerobic pathogens. Parenteral nutrition should be considered if clinical signs and symptoms do not resolve promptly. Approximately 5\% of patients with typhlitis develop complications requiring surgical intervention (eg, perforation, uncontrolled sepsis, rectal bleeding).\(^{525}\)
Consequently, the panel recommends that surgical and other subspecialty consultations be obtained early in the course of treatment.

Lung Infections

Pulmonary infiltrates pose a difficult diagnostic challenge in patients with cancer. Noninfectious causes of pulmonary infiltrates include congestive heart failure, pulmonary edema, hemorrhage, infarction, drug-induced pneumonitis, radiation injury, tumor, bronchiolitis obliterans, and acute respiratory distress syndrome. Common processes can have atypical radiographic appearances, and 2 or more pulmonary processes can exist simultaneously. A careful history should include the time course of respiratory symptoms, sick contacts (eg, community respiratory viral infections, tuberculosis), recent hospitalization, travel, exposure to animals, and exposure to droplets from water distribution systems (*Legionella*). Community outbreaks of specific pathogens (eg, influenza, pertussis) should be considered in the differential diagnosis and should guide initial therapy.

Community-Acquired Pneumonia in the Absence of Neutropenia and Immunosuppressive Therapy

The diagnostic evaluation and initial therapy for community-acquired pneumonia must consider host factors and previous use of antibiotics. The IDSA has published guidelines on community-acquired pneumonia. If feasible, sputum and blood cultures should be collected before starting therapy. In patients who are not neutropenic, receiving IST, or requiring hospital admission (based on a validated pneumonia severity index), therapy includes either 1) a respiratory fluoroquinolone (levofloxacin 750 mg/d, moxifloxacin); or 2) a beta-lactam (eg, high-dose amoxicillin or amoxicillin-clavulanate) plus a macrolide (eg, azithromycin). These regimens will treat most of the common community-acquired pathogens, including “atypical” pneumonia (*Chlamydia, Mycoplasma, and Legionella* species).

Although daptomycin is effective against most gram-positive pathogens, it should not be used for the treatment of pneumonia, because it is inactivated by pulmonary surfactant.

In patients requiring hospital admission, monotherapy with a respiratory fluoroquinolone or combination therapy with a macrolide plus either ceftriaxone, cefotaxime, or ertapenem is recommended. Ertapenem has gram-positive, gram-negative (excluding *P aeruginosa* and *Acinetobacter* species), and anaerobic activity useful for suspected aspiration or postobstructive pneumonia. In patients with severe community-acquired pneumonia (eg, who require admission to an intensive care unit), the panel advises broad-spectrum coverage with an antipseudomonal beta-lactam plus either a respiratory fluoroquinolone or azithromycin. In patients with previous MRSA infection or known colonization with MRSA, addition of vancomycin or linezolid should be considered for pneumonia requiring hospitalization (see *Additions to Initial Empiric Regimen* in the algorithm).

A nasopharyngeal wash for respiratory viruses and initiation of empiric antiviral therapy should be considered during peak influenza season in the local area. Antiviral susceptibility of influenza strains is variable and cannot be predicted based on prior influenza outbreaks. In cases of seasonal influenza and pandemic strains (eg, H1N1), it is necessary to be familiar with susceptibility patterns and guidelines on appropriate antiviral treatment. Note that rapid immunofluorescent viral antigen tests may result in a false negative for H1N1 (swine flu). A parapneumonic effusion should be aspirated and submitted for Gram stain, bacterial culture, protein, lactate dehydrogenase, and pH.

Community respiratory viral infections (such as, influenza, RSV, adenovirus, rhinoviruses, and metapneumoviruses) have a seasonal pattern (generally November through April); however, parainfluenza viral infections can occur throughout the year. During the influenza...
season, consider empiric antiviral therapy for patients within 48 hours after symptoms develop that are suggestive of influenza (eg, high fever, coryza, myalgia, dry cough), especially during community outbreaks. Both the IDSA (2007) and CDC guidelines (2011) recommend antiviral treatment with the neuraminidase inhibitors oseltamivir or zanamivir, which are active against both influenza A and B viruses.340,341 Both agents are approved by the FDA for the treatment of influenza within 48 hours of symptomatic onset; the indicated duration of treatment is 5 days.342,343 However, longer courses of treatment (eg, 10 days) and until resolution of symptoms should be considered in immunocompromised patients; some centers have used higher doses (eg, 150 mg BID) of oseltamivir in these patients with mixed results (see Suggested Minimum Duration of Therapy for Documented Infections in the algorithm). Pandemic influenza does not have a predictable seasonal pattern, and may spread in the community concurrently with a seasonal influenza strain. Antiviral susceptibility of influenza strains is variable and cannot be predicted based on previous influenza outbreaks. In cases of seasonal influenza and pandemic strains, it is necessary to be familiar with susceptibility patterns and guidelines on appropriate antiviral treatment.344 Peramivir has been shown to have similar clinical outcomes as oral oseltamivir345 and can be considered for patients who cannot have oral oseltamivir or inhaled zanamivir, though it is available only as an IV injection.346

Hospital-Acquired Pneumonia

Guidelines on the management of adults with hospital-acquired pneumonia from the American Thoracic Society (ATS) emphasize that the time of onset is an important risk factor for specific pathogens that may be resistant to antibiotics.526 Early-onset hospital-acquired pneumonia (occurring within the first 4 days of hospitalization) is likely to be caused by antibiotic-sensitive bacteria and usually carries a better prognosis. However, patients with cancer may be at risk for acquisition of antibiotic-resistant bacteria based on prior hospitalizations, prior antibiotic use, and impaired immune status regardless of when pneumonia begins in the course of the current hospitalization. The ATS guidelines define the following as risk factors for multidrug-resistant pathogens in patients with health care-associated pneumonia:

1) received antibiotics in the preceding 90 days; 2) hospitalization for 2 days or more in the preceding 90 days; 3) resident in nursing home or extended care facility; 4) chronic dialysis within 30 days; 5) home wound care; and 6) family member with a multidrug-resistant pathogen.526 Late-onset hospital-acquired pneumonia (occurring after 5 days or more of hospitalization) is more likely to be caused by multidrug-resistant pathogens, and is associated with greater morbidity and mortality.

The population of multidrug-resistant bacteria (notably, MRSA and antibiotic-resistant gram-negative pathogens) varies among different hospitals and geographic distributions. Therefore, the selection of initial therapy for hospital-acquired pneumonia requires knowledge of the local patterns of antibiotic susceptibility. For example, at some centers, a high frequency of extended-spectrum beta lactamase-producing gram-negative bacterial infections may make a carbapenem the drug of choice as initial therapy for pneumonia. At other centers, carbapenem-resistant gram-negative infections are an increasing problem, and an alternative class of antibiotics may be preferred based on prior local susceptibility results.527

In patients with late-onset hospital-associated pneumonia or risk factors for multi-drug–resistant pathogens regardless of when pneumonia developed in relation to hospitalization, a broad-spectrum antibiotic regimen is recommended. An antipseudomonal beta-lactam (eg, ceftazidime, cefepime, imipenem/cilastatin, meropenem, doripenem, or piperacillin/tazobactam) plus an antipseudomonal fluorquinolone (eg,
ciprofloxacin or levofloxacin) or aminoglycoside, plus either linezolid or vancomycin (to cover MRSA) is a reasonable initial regimen (aim for vancomycin trough level of 15–20 mcg/mL). If *Legionella* is suspected, a quinolone (ciprofloxacin, levofloxacin, or moxifloxacin) should be used instead of an aminoglycoside. The antibiotic regimen should be subsequently tailored based on culture results.

Pulmonary Infiltrates in Neutropenic Patients

In patients with neutropenia for fewer than 7 days, pulmonary infections are likely to be caused by Enterobacteriaceae (eg, *E coli*, *Klebsiella* species), *P aeruginosa*, *S aureus*, and pathogens encountered in non-immunocompromised persons (as previously described). Because of the neutropenia, consolidation and sputum production may be absent. Blood cultures, a chest radiograph, and, if possible, a sputum sample for Gram stain and culture should be obtained. In suspected acute bacterial pneumonia, appropriate empiric antibiotic therapy must be initiated promptly and the response must be closely monitored in an inpatient setting. The therapeutic regimen depends on several variables, including recent use of antibiotics, community or nosocomial pneumonia, and the local antibiotic sensitivity data.

If community-acquired pneumonia is suspected (ie, pneumonia is present before admission or develops within 3 to 4 days of hospitalization), addition of a macrolide or fluoroquinolone to an antipseudomonal beta-lactam is warranted to treat atypical pathogens. For nosocomial pneumonia, therapy with an antipseudomonal beta-lactam is advised, and addition of an aminoglycoside or fluoroquinolone should be considered. For cases of nosocomial pneumonia in which hospital-acquired legionellosis is suspected, empiric addition of a macrolide or fluoroquinolone is also warranted. Vancomycin or linezolid should be added for pneumonia in patients colonized with MRSA and for nosocomial pneumonia at centers in which MRSA is common.

Community respiratory viruses should also be considered, especially during winter months. RSV, parainfluenza, and influenza are significant pathogens during neutropenia in patients receiving chemotherapy for acute leukemia and in HCT recipients.

If clinical improvement occurs within 48 to 72 hours of therapy, no further diagnostic measures are necessary; antibiotic therapy should be continued until neutropenia resolves and for at least 7 to 14 days thereafter. Once neutropenia resolves, an appropriate oral antibiotic regimen can be administered for the remainder of the course.

In cases of refractory pneumonia, bacterial infection resistant to the initial antibiotic regimen and nonbacterial pathogens should be considered, particularly filamentous fungi. A CT scan of the chest is useful in defining the location and morphology of the lesions, and in guiding diagnostic procedures. A “halo sign” in a persistently febrile neutropenic patient is highly suggestive of invasive aspergillosis; however, angioinvasive infections including other filamentous fungi and *P aeruginosa* may produce similar findings.

A new or progressive infiltrate developing in patients with prolonged neutropenia (eg, more than 10 days) receiving broad-spectrum antibacterial agents suggests invasive aspergillosis or infection with other molds. Consider adding voriconazole or a lipid formulation of amphotericin B while waiting for diagnostic results. Empiric modification of the antibacterial regimen based on the predominant local hospital pathogens (eg, MRSA, antibiotic-resistant gram-negative bacteria) is also warranted in patients with rapidly progressive pneumonia.

Pulmonary Infiltrates in Patients With Impaired Cellular Immunity

Patients with impaired cellular immunity are at increased risk for common bacterial infections and opportunistic infections, including fungi...
(Aspergillus and other filamentous fungi, Cryptococcus neoformans, dimorphic fungi), Legionella, Pneumocystis jirovecii, M tuberculosis, nontuberculous mycobacteria, Nocardia species, and viral pathogens.

In patients with clinical and radiographic findings suggestive of acute bacterial pneumonia (eg, acute onset fever, respiratory symptoms, focal infiltrate), the diagnosis and management are similar to the treatment of neutropenic patients. An antipseudomonal beta-lactam plus either a respiratory fluoroquinolone or azithromycin is a reasonable initial regimen in patients with pneumonia requiring hospitalization. In allogeneic HCT recipients with GVHD not receiving mold-active prophylaxis, addition of a mold-active drug (eg, voriconazole) should be considered. Particularly among the most highly immunocompromised patients (eg, significant GVHD), the differential diagnosis is very broad, and an initial empiric regimen cannot have activity against all possible pathogens. It is critical to establish a definitive diagnosis in patients with negative diagnostic results who are deteriorating clinically after a 2- to 3-day trial of broad-spectrum antibiotics.

Diffuse infiltrates have a broad differential diagnosis, including PCP, viral infections, hemorrhage, and drug-induced pneumonitis. A diagnosis of PCP should be considered in patients with significantly impaired cellular immunity not receiving PCP prophylaxis who present with diffuse pulmonary infiltrates. BAL is the standard approach for diagnosing PCP. In patients with substantial respiratory disease (eg, labored breathing, requiring supplemental oxygen), empiric therapy should be initiated before BAL. Pending BAL results, an initial regimen can include a respiratory fluoroquinolone against community-acquired pathogens and TMP-SMX (TMP component: 5 mg/kg every 8 hours) against possible PCP. Based on studies of patients with AIDS–associated PCP, corticosteroids (initially prednisone 40 mg twice daily, then tapered) should be added for patients with suspected PCP and with room air PaO2 of 75 torr or less. TMP/SMX desensitization or atovaquone, dapsone, or pentamidine (aerosolized or IV) can be considered when PCP prophylaxis is required in patients who are TMP/SMX intolerant. For patients receiving dapsone, consider assessing G6PD levels.

Patients at the highest risk for CMV pneumonia include allogeneic HCT recipients in the post-engraftment setting (particularly if receiving IST for GVHD) and patients receiving treatment with alemtuzumab. Negative results from CMV surveillance testing (peripheral blood PCR) make CMV pneumonia very unlikely. CMV pneumonia is uncommon in non-transplanted patients receiving immunosuppressive chemotherapy for leukemia. Community respiratory viruses can cause severe pulmonary infection in neutropenic patients and in non-neutropenic patients with impaired cellular immunity. Noninfectious etiologies must also be considered, as previously stated. BAL is sensitive in diagnosing bacterial and viral pneumonia and PCP, and is often the initial invasive diagnostic procedure (see Invasive Diagnostic Procedures for Pulmonary Infiltrates).

Non-Invasive Diagnosis of Pneumonia

In patients with suspected pneumonia, routine sputum and blood cultures should be obtained, ideally before antibiotics are initiated or modified. Sputum cultures for Legionella species are sensitive if obtained before initiating antibiotics; however, specific culture conditions are required. Legionellosis can also be diagnosed based on urine antigen testing, which only detects Legionella pneumophila type I, the cause of most (but not all) cases of Legionella pneumonia. A nasopharyngeal wash is useful to diagnose community respiratory viral infections. The rapid test for influenza A and B may be performed using a throat or nasopharyngeal swab. Rapid antigen detection methods can
provide a diagnosis within hours; however, if results are negative, a shell vial culture will take about 5 days.

Fungal pneumonia is suggested by the following: host factors predisposing the patient to invasive aspergillosis; appropriate symptoms or signs of infection; a compatible pulmonary lesion; and a positive serum galactomannan or beta-glucan assay. Host factors indicative of high risk for invasive aspergillosis include neutropenia for more than 10 days, receipt of an allogeneic HCT, prolonged use of high-dose systemic corticosteroids, or treatment with T-cell suppressants. The galactomannan assay is specific for invasive aspergillosis, whereas the beta-glucan assay detects aspergillosis and other invasive fungal infections (including invasive candidiasis, Pneumocystis jirovecii, and fusariosis). Zygomycosis yields negative serum galactomannan and beta-glucan test results.

Antigen-based detection systems have advantages and limitations. A meta-analysis showed that the galactomannan assay had a sensitivity of 70% and specificity of 89% for proven invasive aspergillosis, though the accuracy of the test varied. The lack of consistent results likely relates to different cut-off values for a positive result, differences in patient populations, and possibly the use of mold-active prophylaxis. Several variables can affect the performance of the galactomannan assay, which may account for the different results. The sensitivity of the assay is significantly reduced by concomitant mold-active antifungal agents. False-positive results may be more common in children and allogeneic HCT recipients. Moreover, concomitant piperacillin/tazobactam causes false-positive galactomannan results. False-positive beta-glucan results have also been reported in patients with surgical packing who are receiving immunoglobulin therapy and in patients receiving IV amoxicillin-clavulanate. Despite these limitations, a patient at high risk for invasive aspergillosis (eg, prolonged neutropenia or allogeneic HCT recipient) with clinical and radiological findings (eg, a new pulmonary nodule ≥1 cm, infiltrate) compatible with invasive aspergillosis and with a positive serum galactomannan is likely to have invasive aspergillosis, and therefore a mold-active agent (voriconazole is preferred) should be added.

Additional assays can detect histoplasmosis, coccidioidomycosis, and Pneumocystis jirovecii as part of the noninvasive diagnosis of pneumonia. The assay for serum or urine Histoplasma antigen is a sensitive and specific test in patients with disseminated histoplasmosis (histoplasmosis is endemic in the central United States). Coccidioidomycosis is endemic in the southwestern United States. Disseminated coccidioidomycosis can be diagnosed based on appropriate symptoms and signs of infection and on positive serum titers. As previously discussed, BAL is the diagnostic gold standard for PCP. In a small series, sputum induction with hypertonic saline was diagnostic of PCP in non–HIV-infected patients in about 60% of cases. A BAL should be performed if sputum induction is attempted, and the results are negative.

Invasive Diagnostic Procedures for Pulmonary Infiltrates
Invasive diagnostic procedures may be required in the following situations: 1) the clinical course does not suggest an acute bacterial process; 2) the patient has not responded to initial antibiotic therapy and/or; 3) noninvasive testing yields negative results. BAL has a high diagnostic yield in alveolar infiltrates, such as pneumonia caused by Pneumocystis jirovecii, M tuberculosis, and respiratory viruses. The sensitivity of BAL for focal lesions (such as nodules) is variable. In lesions greater than 2 cm, the sensitivity of BAL ranges from 50% to 80%; however, in smaller lesions, the diagnostic yield is usually about 15%. Quantitative cultures from either BAL or a protected brush catheter may increase the specificity in the diagnosis of bacterial
pneumonia as distinguished from upper airway colonization in ventilated patients.

BAL cultures only detect about 50% of cases; therefore, it is relatively insensitive for diagnosing aspergillosis.\(^{546}\) Galactomannan detection in BAL fluid appears to be more sensitive than serum detection\(^ {547,548}\) and can be used to support a diagnosis of probable aspergillosis.\(^ {549}\) In patients with focal peripheral lesions, percutaneous biopsy may increase the diagnostic yield; however, in thrombocytopenic patients, the risk of bleeding may be unacceptably high. The microbiologic evaluation should take into account the clinical manifestations and nature of the immunosuppression. In highly immunocompromised patients (eg, those receiving chemotherapy for acute leukemia, HCT recipients), the following studies on BAL and lung biopsies should be considered: culture and stains for bacteria, fungi, \textit{Legionella}, mycobacteria, \textit{Nocardia}, HSV, CMV, community respiratory viruses (both rapid antigen and shell vial culture), and cytology or immunofluorescent studies for \textit{Pneumocystis jirovecii}. In a patient with compatible host factors and radiologic findings, a positive galactomannan result from BAL is also indicative of probable invasive aspergillosis.\(^ {549}\)

For nondiagnostic BAL or percutaneous lung biopsy results, a thoracoscopic lung biopsy should be considered if an adequate platelet count is achievable. The thoracoscopic approach has less morbidity than an open lung biopsy and generally provides adequate tissue samples for the diagnosis of most infectious and noninfectious etiologies. This invasive procedure may identify the causative pathogen or the presence of a noninfectious etiology (eg, treatment-associated lung toxicity, hemorrhage, or bronchiolitis obliterans organizing pneumonia [BOOP]), which may allow for the elimination of potentially toxic or unnecessary antimicrobial therapies. Thoracoscopic and open lung biopsies sometimes do not provide a definitive diagnosis, either due to sampling error or nonspecific pathologic findings.

Skin and Soft Tissue Infections

When evaluating the potential for a skin/soft tissue infection, careful examination of all line sites and perineal areas is essential. Antimicrobial therapy should be tailored to the probable organism(s): Staphylococci and streptococci for catheter-associated processes, and gram-negative and anaerobic organisms for perineal processes. Vancomycin may be considered for cellulitis, disseminated papules/lesions, and infections associated with VAD (see \textit{Additions to Initial Empiric Regimen} in the algorithm and \textit{Vascular Access Device Infections} in the discussion). Acyclovir, famciclovir, or valacyclovir should be considered for vesicular lesions after appropriate diagnostic tests (scraping base of vesicle for HSV or VZV, direct fluorescent antibody tests, herpes virus culture) have been performed.

Skin lesions can be manifestations of systemic infection. Ecthyma gangrenosum is the most characteristic skin lesion associated with systemic \textit{P aeruginosa} infection.\(^ {550}\) Similar lesions can be caused by \textit{S aureus}, enteric gram-negative bacilli infection, and filamentous fungi (including \textit{Aspergillus}, \textit{Zygomycetes}, and \textit{Fusarium} species). A rapidly progressive deep soft tissue infection with gas formation suggests clostridial myonecrosis (or polymicrobial necrotizing fascitis).\(^ {551}\) Broad-spectrum antibiotics and surgical debridement may be lifesaving if initiated early. Hematogenously disseminated candidiasis with skin involvement manifests as fever and erythematous cutaneous papules; blood cultures are expected to be positive for \textit{Candida} species.

In the highly immunocompromised patient with cancer, the differential diagnosis of skin lesions is often broad and includes noninfectious etiologies such as drug reactions, Sweet's syndrome, erythema
multiforme leukemia cutis, and (in the case of allogeneic HCT recipients) GVHD. Biopsy of skin lesions for histology and culture is recommended. In allogeneic HCT recipients, the differential diagnosis of infectious etiologies is particularly broad, and cultures from skin biopsies for bacteria, fungi, viruses, and mycobacteria should be considered when infection is suspected.

Vascular Access Device Infections

VAD infections are common as a consequence of the ubiquity of VADs in patients undergoing intensive or cyclic chemotherapy. The risk of infection varies with the device used (long-term implanted catheters versus short-term central catheters), duration of placement, and extent of the patient’s immunosuppression. Short-term central catheters coated with the antimicrobial agent chlorhexidine and silver sulfadiazine (CHSS) have been shown to significantly decrease the incidence of both catheter colonization and catheter-related bloodstream infections compared with standard (non-coated) catheters.\(^552,553\) However, this benefit with CHSS coating was not observed in the setting of patients with hematologic malignancies requiring longer use of central catheters (eg, duration of catheterization 20 days).\(^554\) In subsequent studies that evaluated the use of CHSS-coated short-term catheters compared with controls, CHSS-coated catheters significantly decreased the incidence of colonization but showed no difference in terms of incidence of catheter-related bloodstream infections.\(^555-557\) The use of short-term catheters coated with minocycline and rifampin has been shown to significantly decrease the risks for catheter colonization and bloodstream infections compared with either controls or CHSS-coated catheters.\(^558,559\) However, conflicting results were reported by another study in which minocycline- and rifampin-coated catheters reduced the risk for coagulase-negative staphylococci colonization, but they increased the risk for colonization with *Candida* spp; moreover, no significant difference was noted in the incidence of catheter-related bloodstream infections compared with controls.\(^560\) Only limited data are available on the use of long-term catheters coated with minocycline and rifampin. In a prospective randomized double-blind study in patients with cancer requiring long-term catheterization (mean duration of catheterization, 63–66 days), a significant risk reduction in catheter-related bloodstream infections was observed with the coated catheter (1.6% vs. 8%; RR for uncoated vs. coated, 1.8; 95% CI, 1.4–2.3; \(P = .003\)).\(^561\) The recently published guidelines for the prevention of catheter-related infections (based on an interdisciplinary working group involving the IDSA and CDC) recommend the use of catheters impregnated with CHSS or minocycline/rifampin in patients requiring catheterization for greater than 5 days, if the rate of catheter-related bloodstream infections does not decrease despite implementation of comprehensive prevention measures at the local institution.\(^562\) A meta-analysis of prospective, randomized studies showed that use of a vancomycin lock solution in patients being treated with long-term central VADs reduced the risk of bloodstream infection.\(^563\) The panel does not currently endorse this practice due to concerns over the emergence of bacterial resistance if this approach were widely employed. The IDSA has published guidelines on the diagnosis and management of intravascular catheter-related infections.\(^403\)

VAD infections are categorized as entry or site inflammation versus tunnel infection, port pocket infection, or septic phlebitis (see *Initial Clinical Presentation* in the algorithm). The majority of these infections are caused by gram-positive pathogens, with coagulase-negative staphylococci recovered most frequently.\(^403\) Accordingly, IV vancomycin is recommended for those infections that are serious and clinically obvious.
Most VAD exit site infections can be treated effectively with appropriate antimicrobial therapy without the need for catheter removal. If clinical signs of catheter infection are present, a skin swab for culture from the exit site and blood cultures should be obtained. In a patient with neutropenic fever and clinical signs of a VAD-associated infection, an appropriate initial regimen would consist of an agent recommended for neutropenic fever and vancomycin (see Initial Empiric Therapy for Uncomplicated Fever and Neutropenia and Additions to Initial Empiric Regimen in the algorithm). Linezolid is not advised as routine therapy for catheter-related infections nor is it FDA-approved for this indication. For a clinically apparent, serious, catheter-related infection (such as a tunnel or port pocket infection, or septic phlebitis), catheter removal should be performed immediately.

Determining the role of the catheter in bloodstream infections is frequently difficult if local catheter inflammation is not evident. A useful diagnostic tool for detecting VAD infections is the DTP. Early positivity of central venous blood cultures predicts catheter-related bacteremia and may be used to avoid unnecessary catheter removal in critically ill patients. It was shown that a DTP of 120 minutes or more (between centrally and peripherally drawn blood cultures) is highly sensitive and specific for diagnosing catheter-related bacteremia. However, these studies were only performed in patients with removable catheters, not implanted catheters (eg, Hickman or Mediport) that are frequently used in patients undergoing cancer treatment.

Most catheter-associated bloodstream infections respond to antimicrobial therapy alone without catheter removal, but immediate catheter removal is favored for patients with bloodstream infections caused by fungi (yeasts or molds) or nontuberculosis mycobacteria (eg, Mycobacterium chelonae, Mycobacterium abscessus, Mycobacterium fortuitum). Bloodstream infections caused by Bacillus organisms, Candida, S aureus, Acinetobacter, C jeikeium, P aeruginosa, S maltophilia, and VRE may be difficult to eradicate with antimicrobial therapy alone; therefore, catheter removal should be considered as part of initial therapy. In patients with mucositis, the bowel is likely to be the portal of entry for bloodstream infection by GI flora such as Candida spp. and enterococci. DTP may be useful to distinguish whether bloodstream infection by these organisms is catheter-related and to guide whether catheter removal should be performed. If not removed initially, catheter removal is advised for known or suspected VAD-associated bloodstream infections if the organism is recovered from blood obtained 48 hours after initiation of appropriate antibiotic therapy. In patients with VAD infection and clinical instability, removal of the infected catheter should be performed immediately.

The panel recognizes that certain conditions may preclude the ability to immediately replace IV catheters, such as limited options for IV access and thrombocytopenia refractory to platelet products. Administering antibiotics through each lumen of the involved catheter has been suggested to avoid treatment failure caused by microbial sequestration. Some experts believe supplemental urokinase infusions can be helpful in patients with catheter-related infections. However, the panel believes data are insufficient to recommend either of these approaches.

Central Nervous System Infections

CNS infections in patients with cancer can be divided into surgical and nonsurgical complications. The IDSA has published guidelines on the management of bacterial meningitis. The most common organisms infecting intraventricular devices are coagulase-negative staphylococci, S aureus, and Propionibacterium acnes. Enterobacteriaceae and P aeruginosa account for only 10% of these infections. Coagulase-negative staphylococci and Propionibacterium acnes usually cause...
indolent late postoperative infections. Therapy with systemic antibiotics and removal of the entire device are the most effective approaches to eradicate infection. Use of parenteral and intraventricular instillation of antibiotics without removal of the device may not be effective, and recrudescence of infection is common. Antibiotic therapy should be tailored to the specific pathogen isolated from cerebrospinal fluid. In an acutely ill patient with suspected meningitis related to previous neurosurgery, empiric therapy can include parenteral vancomycin (which has activity against Staphylococcus, Streptococcus, and Propionibacterium species; dose 15 mg/kg every 8–12 hours to maintain a serum trough concentration of 15–20 mcg/mL) in combination with ceftazidime (2 g every 8 hours), cefepime (2 g every 8 hours), or meropenem (2 g every 8 hours) (which have activity against Enterobacteriaceae and P aeruginosa); these doses apply to adults with normal renal function. Amoxicillin should be added to cover listeriosis; however, if meropenem is used, addition of amoxicillin is unnecessary.

CNS infections unrelated to neurosurgery are relatively uncommon in patients with cancer. Initial evaluation generally involves a head CT scan to rule out intracranial bleeding and/or an MRI in addition to a lumbar puncture (assuming there are no contraindications). Cerebrospinal fluid studies should be tailored to specific host factors, epidemiologic exposures (eg, travel history), and clinical presentation. At a minimum, cell counts with differential, glucose and protein levels, Gram stain and bacterial culture, cryptococcal antigen, and fungal culture on cerebrospinal fluid should be obtained. Noninfectious causes of meningitis include nonsteroidal anti-inflammatory agents, TMP/SMX, carcinomatous meningitis, and serum sickness (eg, associated with anti-lymphocyte immunoglobulin preparations).

For suspected CNS infections, infectious disease and neurology consultation is strongly recommended, and empiric therapy should be initiated pending infectious disease consult. Empiric therapy for presumed meningitis should include an anti-pseudomonal beta-lactam agent that readily enters the CSF (eg, cefepime, ceftazidime, meropenem) plus vancomycin plus amoxicillin (to cover listeriosis) (see Additions to Initial Empiric Regimen in the algorithm). If meropenem is used, addition of amoxicillin is unnecessary because meropenem is active against Listeria. This regimen has activity against the common causes of bacterial meningitis, including penicillin-resistant pneumococci and listeriosis. In patients at risk for P aeruginosa meningitis (eg, neutropenia, neurosurgery within the past 2 months, allogeneic HCT, history of P aeruginosa infection), use of cefepime (2 g every 8 hours in adults with normal renal function) or meropenem (2 g every 8 hours in adults with normal renal function) instead of ceftriaxone in the initial empiric regimen is advised. The antibiotic regimen should be tailored based on culture results.

The use of dexamethasone as adjuvant therapy in the management of bacterial meningitis has been evaluated in a number of studies, although conflicting results have been reported. In an earlier systematic review of published data in patients with acute bacterial meningitis, adjuvant therapy with corticosteroids was associated with significantly lower risks for mortality (RR, 0.76; 95% CI, 0.59–0.98), severe hearing loss (RR, 0.36, 95% CI, 0.22–0.60), and long-term neurological sequelae (RR, 0.66; 95% CI, 0.44–0.99). These outcomes mainly reflected the pediatric population, as only limited data were available for adults. In a prospective, randomized, double-blind study involving adult patients with acute bacterial meningitis (N = 301), adjuvant dexamethasone compared with placebo significantly reduced the risks for unfavorable outcomes (defined as a score of 1–4 on the Glasgow Outcome Scale) (RR, 0.59; 95% CI, 0.37–0.94; P = .03) and mortality (RR, 0.48; 95% CI, 0.24–0.98; P = .04); this benefit was observed in...
patients with pneumococcal meningitis.572 In a more recent prospective, randomized, double-blinded study in adults and adolescents with suspected or confirmed bacterial meningitis (N = 435), adjuvant dexamethasone significantly reduced the risks for death at 1 month (RR, 0.43; 95% CI, 0.20–0.94) and death or disability at 6 months (RR, 0.56; 95% CI, 0.32–0.98) in patients with confirmed cases of bacterial meningitis, but not for those with suspected cases.573 Other recent prospective randomized studies in pediatric patients appear to conflict with the findings from the earlier systematic review. In these studies that evaluated the use of adjuvant dexamethasone, glycerol, or both, in children treated with ceftriaxone for bacterial meningitis, adjuvant dexamethasone alone was not associated with significant reductions in risks for death, deafness/hearing loss, or severe neurological sequelae.574,575 Moreover, in a recent meta-analysis of 2029 patients, dexamethasone was not found to be associated with significant reductions in death or neurological sequelae, although a statistically significant reduction in hearing loss was observed among surviving patients.576

The IDSA guidelines (2004) for the management of bacterial meningitis support the incorporation of adjuvant dexamethasone in pediatric patients with \textit{H influenzae} type B meningitis and in adult patients with pneumococcal meningitis.570 In patients with suspected encephalitis (fever, mental status changes, CSF pleocytosis), IV acyclovir (10 mg/kg every 8 hours in patients with normal renal function) should be considered as empiric therapy for HSV in addition to an appropriate antibacterial regimen.577 An MRI and the following CSF studies should be performed: 1) cell count with differential; 2) glucose and protein levels; 3) Gram stain and culture for bacteria; 4) Cryptococcal antigen and fungal culture; and 5) PCR for HSV. PCR for West Nile virus and other arboviruses should be considered in patients with exposure to endemic areas. Culture and PCR for tuberculosis should be considered in patients with known or suspected exposure to tuberculosis (eg, residence in an endemic area, shelter, or prison; previous positive PPD [purified protein derivative]). In patients with severe impairment of cellular immunity (eg, allogeneic HCT recipients, advanced AIDS), additional CSF studies should be considered (such as PCR for CMV, VZV, human herpes virus–6 type B [HHV-6B], and toxoplasmosis). For cases of HHV-6B-associated encephalitis in severely immunocompromised patients such as those who have received an allogeneic transplant, treatment is recommended; however, the optimal therapy is not known (with either foscarnet or ganciclovir).577 Cytology to evaluate for CNS malignancy as a cause of meningitis or encephalitis should also be considered.

Brain abscesses usually manifest with headache, focal neurologic findings, or seizures. An MRI typically shows single or multiple lesions with edema and ring enhancement.578 Bacterial abscesses in non-immunocompromised patients are typically caused by dental flora. In patients with prolonged neutropenia and in allogeneic HCT recipients, CNS aspergillosis must be considered. A chest CT showing a new nodule or infiltrate and a positive serum galactomannan result in this setting is highly suggestive of pulmonary aspergillosis with CNS dissemination. In patients with impaired cellular immunity, other causes of CNS abscesses include toxoplasmosis, nocardiosis, cryptococcosis, and mycobacterial infections. Noninfectious etiologies in patients with impaired cellular immunity include CNS malignancies (such as secondary lymphomas) and Epstein-Barr virus (EBV)–associated post-transplantation lymphoproliferative disorder (PTLD). Given the broad differential diagnosis of new CNS lesions in highly immunocompromised patients, a brain biopsy is strongly recommended (if feasible) with material submitted for histology and culture. Cultures and
stains should include bacteria, fungi, mycobacteria, and Nocardia species.

In non-immunocompromised patients with a bacterial brain abscess, initial therapy with ceftriaxone (2 g every 12 hours in adults) plus metronidazole (7.5 mg/kg every 6 hours in adults with normal renal function) is advised. In patients with prolonged neutropenia without corticosteroids or lymphocyte-depleting agents, a reasonable initial regimen consists of combination cefepime, metronidazole, and voriconazole (IV 6 mg/kg every 12 hours for 2 doses followed by 4 mg/kg every 12 hours); however, IV voriconazole (but not the oral formulation) may worsen renal disease in patients with significant pre-existing renal impairment. Voriconazole (as well as itraconazole and posaconazole) has important drug-drug interactions with certain antiseizure agents (eg, phenytoin); therefore, the voriconazole package insert should be reviewed to guide dosing of these agents. In allogeneic HCT recipients and other patients with severe T-cell impairment, addition of high-dose TMP/SMX (trimethoprim component: 5 mg/kg every 8 hours) should be considered to cover toxoplasmosis and nocardiosis, pending a definitive diagnosis. An infectious disease consultation is advised in all cases of suspected or documented CNS infection.

Therapy for Invasive Fungal Infections

Invasive Candidiasis

Candida species are the fourth most common cause of nosocomial bloodstream infections in the United States. The crude mortality of candidemia ranges from 20% to 40%. This variable mortality rate reflects the presence of serious comorbidities (such as malignancy and neutropenia), patient population (adult versus pediatric), and illness requiring prolonged periods in the intensive care unit. *Candida albicans* is the most common *Candida* species isolated from the blood. The proportion of non-albicans *Candida* species varies among different centers, but accounts for approximately 50% of blood stream isolates.

A randomized study comparing IV fluconazole (400 mg daily) with amphotericin B as therapy for candidemia in non-neutropenic patients found both regimens equally effective, but fluconazole had less toxicity. In a subsequent study of non-neutropenic patients with candidemia, combination therapy with a higher dose of fluconazole (800 mg daily) and amphotericin B led to improved clearance of candidemia compared with fluconazole alone, but the combination regimen was associated with significantly more nephrotoxicity and with no survival benefit. Voriconazole was as equally effective as, but less nephrotoxic than, a strategy of amphotericin B followed by fluconazole in non-neutropenic patients with invasive candidiasis. In trials of “invasive candidiasis,” most patients had candidemia, but those with deep organ involvement (eg, peritoneal, hepatic, or renal candidiasis) without positive blood cultures were also eligible for enrollment.

Four phase III randomized trials have been performed evaluating echinocandins as initial therapy for invasive candidiasis. When caspofungin was compared with conventional amphotericin B, there was a trend for a higher favorable response (defined as resolution of clinical symptoms and culture-confirmed eradication) rate in the caspofungin arm (73% vs. 62%) in the modified intent-to-treat analysis. Among patients who met prespecified criteria for evaluation (those who met eligibility criteria and received at least 5 days of study drug), caspofungin resulted in significantly higher success rate compared with amphotericin B (81% vs. 65%; 95.6% CI, 1.1–29.7; P = .03). Caspofungin was less toxic than amphotericin B. Similarly, micafungin was shown to be as effective as liposomal amphotericin B for invasive candidiasis, with fewer treatment-related adverse events.
Anidulafungin was not inferior to fluconazole as therapy for invasive candidiasis and was possibly more efficacious. At the end of IV therapy, successful outcomes (based on both clinical and microbiologic responses; primary endpoint) were achieved in a higher proportion of patients treated with anidulafungin compared with fluconazole (76% vs. 60%; 95% CI, 3.9–27.0; \(P = .01 \)), though a center effect was observed in this study. Finally, caspofungin and micafungin were shown to be equally safe and efficacious as treatment for invasive candidiasis.

The IDSA has published detailed updated guidelines for the management of candidiasis recommending fluconazole or an echinocandin as initial therapy for most non-neutropenic adult patients; an echinocandin is preferred in critically ill patients. Transition from an echinocandin to fluconazole is recommended for patients who have isolates that are likely to be susceptible to fluconazole (eg, Candida albicans), who are clinically stable, and who have not had recent azole exposure. Fluconazole-resistant Candida isolates are frequently cross-resistant to other azoles; therefore, if candidemia occurs in a patient with recentazole exposure, a switch in class (eg, to an echinocandin) is recommended. Candida krusei is generally resistant to fluconazole. An echinocandin is the preferred therapy for Candida glabrata stains due to their variable sensitivity to azoles; however, transition to fluconazole or voriconazole can be considered if azole susceptibility is documented. Echinocandins have reduced sensitivity to Candida parapsilosis compared to other candidal strains; fluconazole is recommended in this setting.

The IDSA recommends an echinocandin as initial therapy for candidemia in most neutropenic patients. The NCCN Guidelines Panel agrees with this recommendation (category 1), but notes that because studies evaluating echinocandins have included very small numbers of neutropenic patients, the optimal therapy for invasive candidiasis in this population is not definitive. Given the availability of safer alternatives, the panel does not recommend amphotericin B products routinely for candidemia, although such agents may be considered in unusual or complicated cases, such as instances of meningitis and endocarditis.

Invasive Aspergillosis

Voriconazole has been evaluated as primary therapy for invasive aspergillosis. In an open-label, multicenter, randomized trial, voriconazole resulted in a significantly higher success rate (included complete and partial responses) compared with amphotericin B (53% vs. 32%; 95% CI, 10.4–32.9) and was associated with an improved survival rate at 12 weeks (71% vs. 58%; HR, 0.59; 95% CI, 0.40–0.88) in this patient population. Success rates were similar for the 2 treatment arms in the subgroup of patients with neutropenia (51% with voriconazole vs. 32% with amphotericin B). In a retrospective analysis of 86 patients with CNS aspergillosis treated with voriconazole either as primary or subsequent-line therapy, 35% had a complete or partial response. This success rate compares favorably to a previous series in which the frequency of successful responses to amphotericin B in CNS aspergillosis was almost nil. Considerable inter-individual variability in voriconazole exposure can occur, and the utility of monitoring drug levels is controversial. Studies with a few patients have noted a relationship between low plasma voriconazole levels and treatment failure, and between high voriconazole levels and toxicity. Voriconazole blood levels that are at least 1 to 2 mcg/mL are thought to be required for efficacy. One week after initiating treatment with voriconazole, it is recommended that trough levels by TDM be obtained to ensure adequate plasma concentration of the drug.
Obtaining a serum voriconazole level should be considered in cases of breakthrough or refractory fungal disease or drug toxicity.

It is not clear what the optimal therapy is for breakthrough invasive aspergillosis in patients receiving mold-active prophylaxis. Breakthrough invasive aspergillosis in a patient receiving oral posaconazole prophylaxis may be caused by inadequate oral bioavailability due to mucositis or poor oral intake, or possibly resistance. Some experts would advise changing to a different class of antifungals (such as a lipid formulation of amphotericin B, with or without an echinocandin). Others would use IV voriconazole with or without an echinocandin.

Lipid formulations of amphotericin B have at least comparable efficacy and reduced renal toxicity compared to conventional amphotericin B deoxycholate. Some investigators have persuasively argued that lipid formulations should be considered suitable replacements for amphotericin B for primary therapy for many invasive fungal infections. Amphotericin B colloidal dispersion (ABCD) was equally effective as, but less nephrotoxic than, amphotericin B as primary therapy for invasive aspergillosis. Amphotericin B lipid complex (ABLC) was shown to be safe and efficacious as therapy for invasive aspergillosis based on an analysis of a registry database.

A randomized study compared L-AMB at either 3 or 10 mg/kg/d for 14 days, followed by 3 mg/kg/d as therapy for invasive mold infections. Response rates (both complete and partial responses) after completion of treatment with the 3 mg/kg/d and 10 mg/kg/d dose groups were similar (50% vs. 46%); the 12-week survival rates were 72% and 59%, respectively (95% CI, -0.2 to 26%). The high-dose group was associated with significantly higher incidences of nephrotoxicity and hypokalemia, which suggested that the 3 mg/kg/d dosing was more optimal in this patient population. Because 97% of enrolled patients had invasive aspergillosis, this study does not permit conclusions about optimal L-AMB dosing in patients with other mold infections (such as zygomycosis).

Echinocandins have not been evaluated as initial monotherapy for invasive aspergillosis in clinical trials. Caspofungin for treatment of refractory infections in patients with invasive aspergillosis led to a favorable response in 37 (45%) of 83 patients. It might be possible to use combination antifungal therapy pairing an echinocandin with either an amphotericin B preparation or an azole with activity against Aspergillus species. The rationale is that echinocandins target a unique site (the beta-glucan constituent of the fungal cell wall), which is distinct from the polyenes and azoles that target the fungal cell membrane. The combination of an echinocandin with an azole or amphotericin B has shown neutral to synergistic activity in vitro. Enhanced efficacy of combination regimens pairing an echinocandin with either an azole or an amphotericin B formulation was observed in some animal models of invasive aspergillosis but not in others. In two small retrospective series, the combination of caspofungin and liposomal amphotericin B for infections refractory to first-line therapy led to a favorable outcome in approximately 40% to 60% of patients with invasive aspergillosis, although these series included cases of “possible” or “probable” aspergillosis. Marr et al reported a significant improvement in the 3-month survival rate with voriconazole plus caspofungin compared with voriconazole alone in a small retrospective analysis (N = 47) of invasive aspergillosis refractory to first-line therapy. This database study, although encouraging, involved small numbers of patients and the 2 groups of patients evaluated were non-contemporaneous; therefore, other host and infection-related factors may have influenced the outcome. A noncomparative study of caspofungin combined with other mold-active
drugs as subsequent-line therapy for invasive aspergillosis reported a success rate of 49% (25/51) at 12 weeks after initiation of combination therapy, which was similar to caspofungin monotherapy. In an open-label study of invasive aspergillosis, micafungin combined with other antifungals led to a successful response in 29% (5/17) of patients treated as primary therapy and 35% (60/174) of patients with infection refractory to first-line therapy. These results did not appear favorable to response rates observed with micafungin alone (50% and 41% in primary and refractory treatment groups, respectively); however, the patient numbers in the micafungin monotherapy arms were too small to permit comparisons. In addition, the initial micafungin dose (75 mg/d) used in this study was low by current standards. More recently, data from a randomized, prospective clinical trial comparing voriconazole versus voriconazole plus anidulafungin as primary therapy for invasive aspergillosis evaluated response based on 6-week mortality (N = 454 patients with hematologic malignancies or HCT). The combination therapy had a trend towards reduced mortality compared to voriconazole alone (19.3% vs. 27.5%, respectively; 95% CI, -19.0–1.5; \(P = .087 \)).

Posaconazole has shown activity as a second-line agent against a broad spectrum of invasive fungal infections. In an open-label study in patients with invasive aspergillosis refractory to or who had intolerance to standard antifungal therapy (N = 107), 42% had a complete or partial response with posaconazole. Posaconazole is approved in the European Union for the treatment of invasive aspergillosis and certain other invasive fungal infections refractory to standard antifungal agents. In the United States posaconazole is approved by the FDA for prophylaxis of invasive *Aspergillus* and *Candida* infections, and for treatment of oropharyngeal candidiasis (including cases refractory to fluconazole or itraconazole), but is not indicated as primary or subsequent-line therapy for invasive fungal disease. Similarly, although data are emerging for the use of isavuconazole in the treatment of invasive aspergillosis, it is not currently recommended.

The NCCN Guidelines Panel recommends voriconazole monotherapy (category 1) as primary therapy for invasive aspergillosis (see *Antifungal Agents: Azoles* in the algorithm). Although combination antifungal therapy is used as treatment for invasive aspergillosis in some centers, the clinical evidence is inadequate to make conclusions about whether any combination regimen is more effective than voriconazole alone, the current gold standard.

For patients receiving treatment with an echinocandin, the panel recommends TDM following initiation of treatment to ensure adequate plasma concentrations of the drug. Ongoing TDM is generally warranted.

Zygomycosis and Other Invasive Mold Infections

A higher frequency of zygomycosis (also referred to as “mucormycosis”) has emerged at some institutions with the increased use of voriconazole. In a case-control study of invasive aspergillosis and zygomycosis in patients with acute leukemia and allogeneic HCT recipients, use of voriconazole and presence of fungal sinusitis each favored a diagnosis of zygomycosis. However, some transplant centers reported an increased frequency of zygomycosis that pre-dated the availability of voriconazole, a finding that likely reflects a greater proportion of patients with severe host defense impairment. Zygomycosis typically manifests as rhinocerebral or pulmonary disease. Histopathology showing broad aseptate or hyphoseptate hyphae with 90-degree branching is suggestive of zygomycosis, although culture is required for confirmation.
No randomized studies have been performed for treatment of zygomycosis and other uncommon invasive mold infections. Recommendations for therapy are based on a limited number of patients from retrospective analyses, data registries, and open-label trials for refractory infections. Treatment of zygomycosis involves amphotericin B (a lipid formulation is advised over amphotericin B deoxycholate to reduce the chance of nephrotoxicity) plus early and aggressive surgical debridement, when feasible. A gap in knowledge exists regarding optimal dosing of amphotericin B lipid formulations for invasive non-Aspergillus mold infections; an initial dose of 5 mg/kg/d is commonly used. Posaconazole, a second-generation antifungal azole with activity against most of the zygomycetes, has shown promising results as therapy in zygomycosis refractory to or intolerant of amphotericin B formulations. Although not approved by the FDA for this indication, posaconazole can be considered as maintenance therapy for zygomycosis following control of infection with an amphotericin B formulation and/or surgical debridement. Posaconazole has not been evaluated as primary therapy for invasive fungal diseases in clinical trials.

Fusarium species and *Scedosporium* species have emerged as important causes of invasive fungal infection–related mortality in leukemia and in allogeneic HCT recipients at some centers. The likelihood of infection by a *Fusarium* species is substantially increased by the presence of disseminated cutaneous lesions and isolation of a mold from blood culture. Therapy for invasive fusariosis generally involves voriconazole, posaconazole, or a lipid formulation of amphotericin B. *Scedosporium* species are resistant to amphotericin B; therapy generally involves itraconazole, voriconazole, or posaconazole. An infectious disease consultation is advised in all cases of invasive mold infections, particularly for cases involving uncommon and resistant molds.

Early Diagnosis of Invasive Mold Infections

The frequency and diversity of invasive fungal pathogens have increased and effectively treating these pathogens remains a major challenge. CT scanning of the chest may facilitate early detection of aspergillosis and other filamentous fungi. A CT scan may show peripheral or subpleural nodules that are not apparent on plain chest radiographs. The “halo sign” is a characteristic, but not pathognomonic, early chest CT feature of angioinvasive organisms. The hazy alveolar infiltrates surrounding the central nodule or region of consolidation appear to correspond to regions of hemorrhage and are highly suggestive of invasive mold disease, aspergillosis being the most common. The panel recommends a chest CT scan in patients with 10 to 14 days of neutropenia and with persistent or recurrent fever of unknown origin that is unresponsive to empiric antibacterial agents. A chest CT scan may be considered earlier in patients with multiple prior cycles of potently cytotoxic chemotherapy and in patients receiving systemic corticosteroid therapy.

Studies differ regarding whether serum galactomannan is a useful surveillance tool in asymptomatic patients at high risk for mold infections and in patients with persistent neutropenic fever of unknown etiology. In one study, prospective serial monitoring of galactomannan antigenemia in allogeneic HCT recipients yielded positive and negative predictive values of 94.4% and 98.8%, respectively, and antigenemia preceded radiographic findings by more than 1 week in 80% of cases of invasive aspergillosis. In another study, the sensitivity was only 64.5% in cases of definite invasive aspergillosis. The PPV was poor when serum galactomannan was used as a surveillance tool in patients...
with persistent neutropenic fever (PPV = 7.1%) and in HCT (mostly autologous) recipients (PPV = 10%); the negative predictive value was 100% in both groups.539

Odabasi et al533 evaluated the beta-glucan assay as an early diagnostic marker for invasive fungal infections in patients with acute leukemia or MDS receiving antifungal prophylaxis.533 At least one serum sample was positive at a median of 10 days before the clinical diagnosis in all patients with a proven or probable invasive fungal infection, including candidiasis, fusariosis, trichosporonosis, and aspergillosis. The negative predictive value was 100%, and the specificity of the test was 90% for a single positive test result and at least 96% for 2 or more sequential positive results.533 The experience of the beta-glucan assay in HCT recipients is limited and requires additional study.

Although valuable as diagnostic adjuncts to support a diagnosis of probable invasive aspergillosis in patients with compatible host factors, clinical findings, and radiologic findings633 (see \textit{Initial Clinical Presentation for Lung Infiltrates: Evaluation} in the algorithm), the value of these laboratory markers as surveillance tools for invasive fungal infections is controversial. Use of surveillance markers as a trigger for additional diagnostic evaluation or to modify antifungal therapy is at an exploratory level,493 and more research is required. Currently, the evidence is inadequate to recommend any of these methods as a surveillance tool in asymptomatic immunocompromised patients or in patients with neutropenic fever alone.

Summary

Substantial progress has been made in the prevention and treatment of infectious complications associated with neutropenia and IST in patients with cancer. Certain populations of patients are at increased risk for developing infectious complications during the course of their disease and cancer treatment. Infectious complications remain an important cause of morbidity and mortality in patients undergoing anti-tumor therapy. The extent of infectious risk is highly dependent on an individual patient’s underlying malignancy, degree of neutropenia, past history of infections and exposure to pathogens, treatment with myelosuppressive regimens, and the overall status of immune function in the patient. It is therefore imperative that patients be evaluated individually for risk of infection in order to minimize the occurrence of infection-related complications. Preventative measures for infection management in patients with cancer include routine surveillance to monitor for early laboratory indications of infection (especially in the context of viral reactivations) and the appropriate use of prophylaxis and/or preemptive therapy with antimicrobial agents in high-risk patient groups. It is important to note that upfront prophylaxis is not necessary in all patients with cancer; prophylactic measures should only be used in patients at high risk for specific pathogens during the high-risk period in order to avoid the emergence of resistant pathogens.

The development of antipseudomonal beta-lactam agents and the routine use of empiric antimicrobial therapy at the onset of neutropenic fever have contributed to reductions in mortality from bacterial infections. With more patients undergoing treatment with potent cytotoxic regimens (eg, in acute leukemia) and receiving allogeneic HCT, opportunistic viral and fungal infections have become important causes of mortality in these patients. In addition, the increasing prevalence of antibiotic-resistant pathogens is a challenge. Infection control should not only rely on anti-infective prophylaxis but should continue to incorporate standard infection control measures (eg, careful hand-washing by health care professionals). When selecting antimicrobial agents for prophylaxis and/or preemptive therapy,
consideration should be given to the local susceptibility and resistance patterns of pathogens.

In summary, prevention and treatment of infections in patients with cancer is a complex and continuously evolving field. However, these advances in treatment have only further emphasized the need for multidisciplinary care. The NCCN Guidelines for Prevention and Treatment of Cancer-related Infections aim to provide an overview of the risk categorization and recommended strategies for prevention of infections in high-risk patient populations, and recommendations for empiric therapy, evaluation, follow-up, and monitoring in patients with signs and/or symptoms of infections. Individualized risk evaluation for infections, incorporation of preventative measures, and prompt identification and treatment of active infections are essential components of the overall spectrum of care in cancer management, and can contribute to optimizing treatment outcomes in patients with cancer.
References

transplantation. Transpl Infect Dis 2002;4:66-74. Available at:

dapsone as Pneumocystis jiroveci prophylaxis after hematopoietic stem
cell transplantation: a case-control study. Biol Blood Marrow Transplant

Pneumocystis carinii pneumonia in allogeneic blood and marrow
transplant recipients receiving dapsone prophylaxis. Clin Infect Dis

199. Vasconcelles MJ, Bernardo MV, King C, et al. Aerosolized
pentamidine as pneumocystis prophylaxis after bone marrow
transplantation is inferior to other regimens and is associated with
decreased survival and an increased risk of other infections. Biol Blood

200. DeMasi JM, Cox JA, Leonard D, et al. Intravenous pentamidine is
safe and effective as primary pneumocystis pneumonia prophylaxis in
children and adolescents undergoing hematopoietic stem cell
transplantation. Pediatr Infect Dis J 2013;32:933-936. Available at:

201. Diri R, Anwer F, Yeager A, et al. Retrospective review of
intravenous pentamidine for Pneumocystis pneumonia prophylaxis in
allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis

effective as second line Pneumocystis pneumonia prophylaxis in

204. El-Sadr WM, Murphy RL, Yurik TM, et al. Atovaquone compared
with dapsone for the prevention of Pneumocystis carinii pneumonia in
patients with HIV infection who cannot tolerate trimethoprim,
sulfonamides, or both. Community Program for Clinical Research on

205. Madden RM, Pui CH, Hughes WT, et al. Prophylaxis of
Pneumocystis carinii pneumonia with atovaquone in children with

pneumonia developing within one month of intensive chemotherapy for

207. Sepkowitz KA. Pneumocystis carinii pneumonia among patients

208. Sepkowitz KA. Pneumocystis carinii pneumonia in patients without
AIDS. Clin Infect Dis 1993;17 Suppl 2:S416-422. Available at:

pneumonia among patients without AIDS at a cancer hospital. JAMA

210. Merck & Co., Inc. Prescribing information. Temodar®
temozolomide) capsules, and injection (IV infusion). 2015. Available at:

238. Bregante S, Bertilson S, Tedone E, et al. Foscarnet prophylaxis of cytomegalovirus infections in patients undergoing allogeneic bone marrow transplantation (BMT): a dose-finding study. Bone Marrow...

Prevention and Treatment of Cancer-Related Infections

Prevention and Treatment of Cancer-Related Infections

564. Abdelkefi A, Achour W, Ben Othman T, et al. Difference in time to positivity is useful for the diagnosis of catheter-related bloodstream

606. Kontoyiannis DP, Hachem R, Lewis RE, et al. Efficacy and toxicity of caspofungin in combination with liposomal amphotericin B as primary...

621. Boutati EI, Anaissie EJ. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: ten years' experience at a

